Novel informed modelling approaches to investigate the evolution and management of herbicide resistance in Alopecurus myosuroides

研究新的知情建模方法,用于研究 Alopecurus myosuroides 除草剂抗性的演变和管理

基本信息

  • 批准号:
    BB/I01652X/1
  • 负责人:
  • 金额:
    $ 11.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Training Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The highly competitive grass weed, Alopecurus myosuroides (black-grass) is prone to the evolution of resistance to herbicides. The extent of evolved herbicide resistance is currently greatest in the UK and France where documented cases of resistance to acetyl co-enzyme A carboxylase (ACCase) -inhibiting and acetolactate synthase (ALS) -inhibiting herbicides are common and widespread. More recently, the species is rapidly expanding its range northwards and eastwards and reports of resistance are increasing in Germany and other countries. At the same time, current changes to EU pesticide registration are reducing the number of herbicide modes of action available for black-grass control, making it probable that resistance to remaining modes of action will be an even greater issue in future. These increases in the prevalence and risk of herbicide resistance must drive agrichemical companies, farmers and advisers towards the provision of more sustainable herbicide use strategies and greater adoption of integrated weed management. Demo-genetic models can combine knowledge of the demography and life cycle of black-grass with our current understanding of the genetic basis of herbicide resistance to examine the influence of various management practices on the evolution and spread of herbicide resistance. These models have been developed previously by the academic supervisor for other weed species. This project will build upon and enhance these approaches by using the extensive database of black-grass resistance cases that Bayer CropScience has been collating since 2008. For each suspected resistant black-grass population that is sent to Bayer, an extensive suite of laboratory and glasshouse tests are performed to determine the extent of resistance, as well its genetic and mechanistic basis. This provides a unique dataset documenting the extent and distribution of different resistance mechanisms across Europe as well as information on the frequency and phenotypic consequences (resistance profile) of various resistance-endowing point mutations. This dataset is even more compelling as it includes a field management history for each location from which black-grass is sampled, providing the opportunity to relate the extent and mechanism of resistance to past management. A major limitation of previous models of herbicide resistance evolution has been the lack of data on the relative frequency of various resistance mechanisms and mutations and it is envisaged that major advances in resistance management can be achieved by combining this data into a modelling format. The developed model will be able to simultaneously simulate evolution of resistance via multiple resistance mechanisms and knowledge of the relative frequencies of mechanisms and mutations together with their resistance profile will be used to explore management strategies to reduce risks of resistance evolution. In the first instance, evolution of resistance will be simulated in individual fields. However, a longer term aim of the project will be to consider evolution of resistance on a landscape scale by simulating black-grass populations in a network of fields with contrasting management and with gene flow between the fields. In addition to modelling, the student will also conduct an annual random survey of black-grass populations from the UK. The extent of resistance in these populations will be determined in glasshouse assays at the University of Warwick. Further experiments will be conducted to examine the fitness consequences of resistance in these populations and this information will be used to help develop the demo-genetic model. During each year, the student will spend a 2-3 month period at the Bayer Crop Science Integrated Weed Management and Herbicide Resistance diagnostics laboratory in Frankfurt. During this time they will perform a suite of molecular physiological assays to determine the resistance mechanisms present in the UK collected populations.
大穗看麦娘(Alopecurus myosuroides)是一种竞争性很强的禾本科杂草,对除草剂的抗性很容易发生进化。目前,在英国和法国,进化的除草剂抗性的程度最大,其中对乙酰辅酶A羧化酶(ACCase)抑制和乙酰乳酸合酶(ALS)抑制除草剂的抗性的记录案例是常见和普遍的。最近,该物种正迅速向北和向东扩展其分布范围,在德国和其他国家,有关耐药性的报告也在增加。与此同时,目前欧盟农药登记的变化正在减少可用于黑草控制的除草剂作用模式的数量,这使得对剩余作用模式的抗性可能在未来成为一个更大的问题。除草剂耐药性的流行和风险的增加必须推动农用化学品公司、农民和顾问提供更可持续的除草剂使用战略,并更多地采用综合杂草管理。人口遗传模型可以结合联合收割机知识的人口学和生活史的黑草与我们目前的理解除草剂抗性的遗传基础,研究各种管理措施对除草剂抗性的进化和传播的影响。这些模型以前已经由其他杂草物种的学术主管开发。该项目将通过使用拜耳作物科学自2008年以来一直在整理的广泛的黑草抗性案例数据库,建立并加强这些方法。对于每一个被送到拜耳的疑似抗性黑草种群,都进行了一系列广泛的实验室和温室测试,以确定抗性的程度及其遗传和机制基础。这提供了一个独特的数据集,记录了整个欧洲不同耐药机制的程度和分布,以及各种耐药点突变的频率和表型后果(耐药谱)的信息。该数据集更引人注目,因为它包括每个位置的田间管理历史,从该位置对黑草进行采样,从而提供了将抗性的程度和机制与过去的管理联系起来的机会。以前的除草剂抗性进化模型的一个主要局限性是缺乏各种抗性机制和突变的相对频率的数据,据设想,通过将这些数据结合到一个建模格式中,可以实现抗性管理的重大进展。所开发的模型将能够通过多种耐药机制同时模拟耐药性的演变,并且机制和突变的相对频率及其耐药性概况的知识将用于探索管理策略以降低耐药性演变的风险。在第一种情况下,将在各个领域模拟抗性的演变。然而,该项目的长期目标是通过模拟田间网络中的黑草种群来考虑景观尺度上的抗性进化,该网络具有对比管理和田间之间的基因流。除了建模,学生还将对英国的黑草种群进行年度随机调查。将在沃里克大学的温室试验中确定这些种群的抗性程度。将进行进一步的实验,以检查这些群体中的抗性的适应性后果,这些信息将用于帮助开发人口遗传模型。每年,学生将在法兰克福的拜耳作物科学综合杂草管理和除草剂抗性诊断实验室度过2-3个月的时间。在此期间,他们将进行一系列分子生理学测定,以确定英国收集的种群中存在的抗性机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
生命分子工学・海洋生命工学研究室
生物分子工程/海洋生物技术实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship

相似海外基金

PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
  • 批准号:
    EP/Y027930/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Fellowship
Microstructurally Informed Modelling of Metal Fragmentation
金属碎片的微观结构建模
  • 批准号:
    2904905
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Data-informed modelling of aerosol resuspension under aerodynamic loads
空气动力载荷下气溶胶再悬浮的数据知情建模
  • 批准号:
    2885860
  • 财政年份:
    2023
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Physics-informed Machine Learning Modelling for Multi-scale Building Energy Systems with Enhanced Accuracy and Interpretability
具有更高准确性和可解释性的多尺度建筑能源系统的基于物理的机器学习建模
  • 批准号:
    2725680
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
Crack-Informed Structural Modelling and Assessment of Existing Concrete Infrastructure
现有混凝土基础设施的裂缝通知结构建模和评估
  • 批准号:
    RGPIN-2021-02642
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Discovery Grants Program - Individual
End-to-end wind power modelling: developing physics-informed machine learning models for atmospheric fluid dynamics
端到端风力发电建模:开发大气流体动力学的物理信息机器学习模型
  • 批准号:
    RGPIN-2021-04238
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Discovery Grants Program - Individual
Physics informed constitutive modelling of geomaterials
地质材料的物理本构建模
  • 批准号:
    2748334
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Studentship
What happened and why? Exploring the development, implementation and impact of COVID-19 public health policies in Ontario using a health equity lens
发生了什么以及为什么?
  • 批准号:
    473322
  • 财政年份:
    2022
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Operating Grants
End-to-end wind power modelling: developing physics-informed machine learning models for atmospheric fluid dynamics
端到端风力发电建模:开发大气流体动力学的物理信息机器学习模型
  • 批准号:
    DGECR-2021-00323
  • 财政年份:
    2021
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Discovery Launch Supplement
End-to-end wind power modelling: developing physics-informed machine learning models for atmospheric fluid dynamics
端到端风力发电建模:开发大气流体动力学的物理信息机器学习模型
  • 批准号:
    RGPIN-2021-04238
  • 财政年份:
    2021
  • 资助金额:
    $ 11.71万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了