How does light control the activity and electrical properties of neurons integrating arousal behaviour, circadian rhythms, and sleep?
光如何控制神经元的活动和电特性,整合唤醒行为、昼夜节律和睡眠?
基本信息
- 批准号:BB/J018589/2
- 负责人:
- 金额:$ 31.08万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Life on our planet is exposed to the regular changes of night and day. As a consequence animals have evolved a 24 hour timing mechanism, the so-called 'circadian clock', which tunes our behaviour and physiology to the day-night cycle (e.g. sleep-wake cycles, metabolism). An animal's clock still ticks when it lives in continuous darkness (i.e. a cave). Circadian clocks work similar to a normal clock, e.g. they run at a steady pace (with a 24hr period) and can be reset if they go wrong. In nature this resetting is caused by the environment, i.e. the regular changes of light and dark. As a consequence, circadian rhythms are synchronized with the environment. Famous examples for both the independence of circadian clocks and their ability to communicate with the environment are jetlag (caused by travel across time zones) or shift work. If you are jetlagged, your circadian clock is still ticking according to the time where you boarded your plane and is telling you to be awake in the middle of the night. Gradually though, your internal clock will adjust (synchronize) to the new time zone and you will feel comfortable again. Circadian clocks consist of clock genes that switch on and then switch themselves off every 24hrs in the clock neurons of the brain. Classical genetic experiments mostly performed using the fruit fly Drosophila identified nearly all the clock genes and the clock mechanism that was later found to be similar in humans. However, it is still not known how all the parts are integrated to form a working clock sensitive to light and able to orchestrate the physiology and behaviour of the whole animal: this is the overall aim of the current proposal.The fly clock consists of 150 neurons that communicate with each other via electrical and chemical signals that are thought to synchronise rhythms between these neurons generating the overall circadian behaviour. The number and frequency of these impulses (called electrical activity) controls the flow of information in the clock circuit, much like a computer. We wish to study the proteins involved in relaying these signals (called channels, co-transporters and receptors) between the clock neurons, which in turn control circadian behaviour and sleep. We know that the clock is exquisitely sensitive to light so we are interested in the proteins that transmit information about the light conditions to and around the clock. We previously isolated a light sensitive clock protein called Cryptochrome (Cry) in flies, which later was shown to have important circadian functions from plants to humans. Again we have used the power of fly genetics and discovered another key light sensor called Qsm, a channel called Shaw, a receptor called GABAA and co-transporter called NKCC that all influence the clock. In this proposal we want to work out how they fit together to control circadian behaviour, arousal and sleep. This will be achieved by answering the following experimental questions:1) What is the mechanism by which light activates Qsm and causes molecular and behavioural synchronization of the clock? We will go on to see if the human version of Qsm can also function in the clock.2) How do Qsm, Shaw and NKCC interact with each other in the clock?3) How does Shaw generate electrical signals in the clock neurons and how are these affected by light and Qsm? This will involve placing small electrodes on the clock neurons in the fly's brain and recording their electrical signals under different light conditions.4) How do Qsm, NKCC and GABAA receptors act together in the clock to control arousal and sleep? This research will help us to better understand the effect of light on circadian clocks and sleep identifying new potential targets for treatment of sleep disorders and jetlag. Research into circadian clocks and sleep is important as they profoundly affect our health, productivity and quality of life.
我们星球上的生命暴露在昼夜的规律变化中。因此,动物已经进化出一种24小时计时机制,即所谓的“昼夜节律钟”,它将我们的行为和生理调节到昼夜周期(例如睡眠-觉醒周期,新陈代谢)。当动物生活在持续的黑暗中(即洞穴中)时,它的时钟仍然滴答作响。生物钟的工作原理类似于正常的时钟,例如,它们以稳定的速度(24小时周期)运行,如果出错,可以重置。在自然界中,这种重置是由环境引起的,即光和暗的规则变化。因此,昼夜节律与环境同步。生物钟的独立性及其与环境沟通的能力的著名例子是时差(由跨时区旅行引起)或轮班工作。如果你有时差,你的生物钟仍然根据你登机的时间滴答作响,并告诉你在半夜醒来。渐渐地,你的生物钟会调整(同步)到新的时区,你会再次感到舒适。生物钟由时钟基因组成,这些基因在大脑的时钟神经元中每隔24小时打开然后关闭。经典的遗传学实验主要是用果蝇来进行的,它们几乎识别出了所有的时钟基因和时钟机制,后来发现这些基因和机制在人类中是相似的。然而,目前还不清楚这些部分是如何整合成一个对光线敏感的工作时钟,并能够协调整个动物的生理和行为:这是目前提案的总体目标。苍蝇时钟由150个神经元组成,这些神经元通过电信号和化学信号相互通信,这些信号被认为是同步这些神经元之间的节奏,从而产生整体的昼夜节律行为。这些脉冲的数量和频率(称为电活动)控制着时钟电路中的信息流,就像计算机一样。我们希望研究参与在时钟神经元之间传递这些信号(称为通道,协同转运蛋白和受体)的蛋白质,这些蛋白质反过来控制昼夜行为和睡眠。我们知道生物钟对光非常敏感,所以我们对将光环境信息传递到生物钟及其周围的蛋白质感兴趣。我们之前在苍蝇中分离出一种名为Cryptochrome(Cry)的光敏时钟蛋白,后来被证明具有重要的昼夜节律功能,从植物到人类。我们再次利用果蝇遗传学的力量,发现了另一个关键的光传感器Qsm,一个通道Shaw,一个受体GABAA和协同转运蛋白NKCC,它们都影响着生物钟。在这个提议中,我们想弄清楚它们是如何结合在一起来控制昼夜行为、觉醒和睡眠的。这将通过回答以下实验问题来实现:1)光激活Qsm并导致时钟的分子和行为同步的机制是什么?我们将继续看看人类版本的Qsm是否也可以在时钟中发挥作用。2)Qsm、Shaw和NKCC如何在时钟中相互作用?3)Shaw如何在时钟神经元中产生电信号,以及这些信号如何受到光和Qsm的影响?这将涉及在苍蝇大脑的时钟神经元上放置小电极,并在不同的光照条件下记录它们的电信号。4)Qsm、NKCC和GABAA受体如何在时钟中共同作用以控制觉醒和睡眠?这项研究将帮助我们更好地了解光对生物钟和睡眠的影响,为治疗睡眠障碍和时差反应确定新的潜在目标。对生物钟和睡眠的研究非常重要,因为它们深刻地影响着我们的健康,生产力和生活质量。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-canonical Phototransduction Mediates Synchronization of the Drosophila melanogaster Circadian Clock and Retinal Light Responses.
- DOI:10.1016/j.cub.2018.04.016
- 发表时间:2018-06-04
- 期刊:
- 影响因子:0
- 作者:Ogueta M;Hardie RC;Stanewsky R
- 通讯作者:Stanewsky R
The Drosophila TRPA1 Channel and Neuronal Circuits Controlling Rhythmic Behaviours and Sleep in Response to Environmental Temperature.
- DOI:10.3390/ijms18102028
- 发表时间:2017-10-03
- 期刊:
- 影响因子:5.6
- 作者:Roessingh S;Stanewsky R
- 通讯作者:Stanewsky R
Sensory Conflict Disrupts Activity of the Drosophila Circadian Network.
- DOI:10.1016/j.celrep.2016.10.029
- 发表时间:2016-11-08
- 期刊:
- 影响因子:8.8
- 作者:Harper REF;Dayan P;Albert JT;Stanewsky R
- 通讯作者:Stanewsky R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralf Stanewsky其他文献
A novel emperiod/em mutation implicating nuclear export in temperature compensation of the emDrosophila/em circadian clock
一种新的周期/周期突变,暗示着核输出与果蝇昼夜节律钟的温度补偿有关
- DOI:
10.1016/j.cub.2022.12.011 - 发表时间:
2023-01-23 - 期刊:
- 影响因子:7.500
- 作者:
Astrid Giesecke;Peter S. Johnstone;Angelique Lamaze;Johannes Landskron;Ezgi Atay;Ko-Fan Chen;Eva Wolf;Deniz Top;Ralf Stanewsky - 通讯作者:
Ralf Stanewsky
Ralf Stanewsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralf Stanewsky', 18)}}的其他基金
How does light control the activity and electrical properties of neurons integrating arousal behaviour, circadian rhythms, and sleep?
光如何控制神经元的活动和电特性,整合唤醒行为、昼夜节律和睡眠?
- 批准号:
BB/J018589/1 - 财政年份:2013
- 资助金额:
$ 31.08万 - 项目类别:
Research Grant
Dissection of a novel 'periphery to brain' circuit that synchronizes Drosophila's circadian clock with temperature cycles
剖析一种新颖的“从外周到大脑”电路,使果蝇的生物钟与温度周期同步
- 批准号:
BB/H001204/1 - 财政年份:2010
- 资助金额:
$ 31.08万 - 项目类别:
Research Grant
Is the novel rhythmically expressed gene 'quasimodo' the missing link between the circadian clock and membrane properties of pacemaker neurons?
新的有节奏表达的基因“quasimodo”是生物钟和起搏神经元膜特性之间缺失的联系吗?
- 批准号:
BB/E020828/1 - 财政年份:2007
- 资助金额:
$ 31.08万 - 项目类别:
Research Grant
相似国自然基金
衍射光学三维信息加密与隐藏的研究
- 批准号:60907004
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
How Does Attention and Arousal Interact to Modulate Vision?
注意力和唤醒如何相互作用来调节视力?
- 批准号:
10386446 - 财政年份:2022
- 资助金额:
$ 31.08万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10099950 - 财政年份:2020
- 资助金额:
$ 31.08万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10475669 - 财政年份:2020
- 资助金额:
$ 31.08万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10269007 - 财政年份:2020
- 资助金额:
$ 31.08万 - 项目类别:
How Does Actin Disassembly Drive Myelin Wrapping?
肌动蛋白分解如何驱动髓磷脂包裹?
- 批准号:
10474732 - 财政年份:2020
- 资助金额:
$ 31.08万 - 项目类别:
How Does Normalization Regulate Visual Competition?
标准化如何规范视觉竞争?
- 批准号:
10164789 - 财政年份:2017
- 资助金额:
$ 31.08万 - 项目类别:
The hook-shaped ommatidia of the compound eye of Talitrus saltator (Crustacea, Amphipod); how does it prevent the light leakage from the bent shaped light waveguide in the eye.
Talitrus salator(甲壳纲,片脚类)复眼的钩状小眼;
- 批准号:
17K19387 - 财政年份:2017
- 资助金额:
$ 31.08万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
How does TREX2 maintain and alter chromosomes?
TREX2如何维持和改变染色体?
- 批准号:
8925829 - 财政年份:2014
- 资助金额:
$ 31.08万 - 项目类别:
How does TREX2 maintain and alter chromosomes?
TREX2如何维持和改变染色体?
- 批准号:
8758039 - 财政年份:2014
- 资助金额:
$ 31.08万 - 项目类别:
How does light control the activity and electrical properties of neurons integrating arousal behaviour, circadian rhythms, and sleep?
光如何控制神经元的活动和电特性,整合唤醒行为、昼夜节律和睡眠?
- 批准号:
BB/J017221/1 - 财政年份:2013
- 资助金额:
$ 31.08万 - 项目类别:
Research Grant