Mechanisms and function of alternative splicing in the plant circadian clock
植物生物钟中选择性剪接的机制和功能
基本信息
- 批准号:BB/K006835/1
- 负责人:
- 金额:$ 51.25万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Circadian rhythms are ubiquitous in nature: most organisms exhibit robust daily rhythms in biological processes, growth or behaviour. The most familiar rhythm to us is our sleep/wake cycle which is set to local time and gives rise to jet lag when time-zones are traversed. Rhythms are driven by 'circadian clocks' located in every living cell that continue to run even in the absence of external signals. These biological devices allow an organism to anticipate predictable environmental changes such as the regular day to night transitions and to adjust its behaviour accordingly. Circadian clocks comprise molecular circuits organised into feedback loops that generate the oscillatory behaviour of clock components. By linking to different molecular pathways through the cycle, the clock is able to regulate the timing of key pathways (e.g. metabolic, signalling, growth and development) through the day. Clockwork failure can have a large fitness costs to the organism; in humans it contributes to several disease states.Circadian clocks can operate over a temperature range. This is particularly important for plants that are exposed to the ever-changing environment. Chemical reaction rates are very sensitive to temperature change, yet the clock remains invariant in the face of daily temperature changes and a range of weather patterns through the seasons. Yet how this is achieved is not known. A key objective for this project is therefore to understand molecular processes that buffer the plant clock from temperature changes. This is important as maintaining clock function is essential for optimal photosynthesis, growth, and the timing of reproduction - factors that influence seed abundance (a yield output for crop plants). When genes are expressed the DNA sequence is first copied into RNA (transcription), the RNA is processed and then it directs synthesis of the corresponding protein (translation). In this project we focus on deciphering the role of post-transcriptional RNA processing (alternative splicing: AS) in temperature-dependent clock function in the model plant Arabidopsis. AS generates different transcripts from the same gene and thereby can modulate transcript and protein levels and functions. We have shown that AS is important in controlling clock gene expression. We will establish the extent of AS in clock input genes, how this is affected at low temperature and their influence expression/AS of clock genes. Plants experience continued and variable temperature changes throughout the day/night cycle - we will investigate the degree and timing of temperature change which is able to elicit a temperature-dependent AS response. Light also has a major influence on the clock and we will identify which AS events respond to light intensity changes and whether they are different from temperature-dependent events.A major question is how the different types of AS in different clock genes are regulated and how this mechanism contributes to temperature buffering of the circadian clockwork. We will use RNA sequencing to assess AS events during cooling. Co-expression and co-splicing network analysis will identify genes whose expression/splicing profiles correlate with those of the core clock and clock-associated genes to identify putative regulatory genes. We will also examine the natural genetic variation in this process and how this might aid our understanding. The role of AS in regulation of clock gene expression is highly relevant to crop plants and yield. To utilise the knowledge and approaches from our Arabidopsis research, we have started to examine AS control in potato and barley to begin the translation toward application. We anticipate that this work will provide new insights into what controls phenotypes such as earliness in barley and endodormancy in potato and ultimately lead to strategies for the generation of new genotypes that have increased robustness to temperature and other stresses that can affect plants.
昼夜节律在自然界中无处不在:大多数生物体在生物过程、生长或行为中表现出强大的每日节律。我们最熟悉的节奏是我们的睡眠/觉醒周期,它被设置为当地时间,当穿越时区时会引起时差。节奏是由位于每个活细胞中的“生物钟”驱动的,即使在没有外部信号的情况下,生物钟也会继续运行。这些生物装置使生物体能够预测可预测的环境变化,例如有规律的昼夜转换,并相应地调整其行为。生物钟包括组织成反馈回路的分子电路,该反馈回路产生时钟组件的振荡行为。通过与周期中不同的分子途径相联系,生物钟能够调节一天中关键途径(例如代谢,信号传导,生长和发育)的时间。生物钟的失灵会给生物体带来巨大的健康损失;在人类中,它会导致几种疾病状态。这对于暴露在不断变化的环境中的植物尤其重要。化学反应速率对温度变化非常敏感,但时钟在面对每日温度变化和一系列季节性天气模式时保持不变。然而,这是如何实现的尚不清楚。因此,该项目的一个关键目标是了解缓冲植物时钟免受温度变化影响的分子过程。这一点很重要,因为维持生物钟功能对于最佳光合作用、生长和繁殖时间至关重要--这些因素影响种子丰度(作物的产量)。当基因表达时,DNA序列首先被复制成RNA(转录),RNA被加工,然后它指导相应蛋白质的合成(翻译)。在这个项目中,我们专注于破译转录后RNA加工(选择性剪接:AS)在模式植物拟南芥中的温度依赖性时钟功能中的作用。AS从同一基因产生不同的转录本,从而可以调节转录本和蛋白质水平和功能。我们已经证明AS在控制时钟基因表达中是重要的。我们将建立时钟输入基因中AS的程度,这在低温下是如何受到影响的,以及它们对时钟基因表达/AS的影响。植物经历持续和可变的温度变化,在整个白天/黑夜周期-我们将调查的程度和时间的温度变化,这是能够引起温度依赖性AS响应。光对生物钟也有重要的影响,我们将确定哪些AS事件响应于光强度变化,以及它们是否与温度依赖性事件不同。一个主要的问题是不同生物钟基因中不同类型的AS是如何调节的,以及这种机制如何有助于生物钟的温度缓冲。我们将使用RNA测序来评估冷却期间的AS事件。共表达和共剪接网络分析将鉴定其表达/剪接谱与核心时钟和时钟相关基因的表达/剪接谱相关的基因,以鉴定推定的调控基因。我们还将研究这个过程中的自然遗传变异,以及这如何有助于我们的理解。AS在时钟基因表达调控中的作用与作物植株和产量高度相关。为了利用我们拟南芥研究的知识和方法,我们已经开始研究马铃薯和大麦中的AS控制,以开始向应用的转化。我们预计,这项工作将提供新的见解,什么控制表型,如大麦早熟和马铃薯内休眠,并最终导致战略的新基因型的产生,增加了对温度和其他压力,可以影响植物的鲁棒性。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global spatial analysis of Arabidopsis natural variants implicates 5'UTR splicing of LATE ELONGATED HYPOCOTYL in responses to temperature.
- DOI:10.1111/pce.13188
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:James AB;Sullivan S;Nimmo HG
- 通讯作者:Nimmo HG
Arabidopsis thaliana PRR7 Provides Circadian Input to the CCA1 Promoter in Shoots but not Roots.
- DOI:10.3389/fpls.2021.750367
- 发表时间:2021
- 期刊:
- 影响因子:5.6
- 作者:Nimmo HG;Laird J
- 通讯作者:Laird J
Rapid and dynamic alternative splicing impacts the Arabidopsis cold response transcriptome
快速动态的选择性剪接影响拟南芥冷反应转录组
- DOI:10.1101/251876
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Calixto C
- 通讯作者:Calixto C
How does temperature affect splicing events? Isoform switching of splicing factors regulates splicing of LATE ELONGATED HYPOCOTYL (LHY).
- DOI:10.1111/pce.13193
- 发表时间:2018-07
- 期刊:
- 影响因子:0
- 作者:James AB;Calixto CPG;Tzioutziou NA;Guo W;Zhang R;Simpson CG;Jiang W;Nimmo GA;Brown JWS;Nimmo HG
- 通讯作者:Nimmo HG
AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data
- DOI:10.1101/051938
- 发表时间:2016-05
- 期刊:
- 影响因子:0
- 作者:Runxuan Zhang;C. Calixto;Yamile Marquez;Peter Venhuizen;Nikoleta A Tzioutziou;Wenbin Guo;Mark A. Spensley;Nicolas Frei dit Frey;H. Hirt;A. James;H. G. Nimmo;A. Barta;M. Kalyna;John W. S. Brown
- 通讯作者:Runxuan Zhang;C. Calixto;Yamile Marquez;Peter Venhuizen;Nikoleta A Tzioutziou;Wenbin Guo;Mark A. Spensley;Nicolas Frei dit Frey;H. Hirt;A. James;H. G. Nimmo;A. Barta;M. Kalyna;John W. S. Brown
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hugh Nimmo其他文献
Hugh Nimmo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hugh Nimmo', 18)}}的其他基金
Dynamic re-programming of the cold transcriptome in Arabidopsis
拟南芥冷转录组的动态重编程
- 批准号:
BB/P006868/1 - 财政年份:2017
- 资助金额:
$ 51.25万 - 项目类别:
Research Grant
Protein function underlying plasticity of the plant circadian clock
植物生物钟可塑性的蛋白质功能
- 批准号:
BB/H000135/1 - 财政年份:2010
- 资助金额:
$ 51.25万 - 项目类别:
Research Grant
Organ communication in the Arabidopsis circadian clock
拟南芥生物钟中的器官通讯
- 批准号:
BB/G008752/1 - 财政年份:2009
- 资助金额:
$ 51.25万 - 项目类别:
Research Grant
相似国自然基金
CBP/p300-HADH轴在基础胰岛素分泌调节中的作用和机制研究
- 批准号:82370798
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
- 批准号:82371651
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
配子生成素GGN不同位点突变损伤分子伴侣BIP及HSP90B1功能导致精子形成障碍的发病机理
- 批准号:82371616
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于再生运动神经路径优化Agrin作用促进损伤神经靶向投射的功能研究
- 批准号:82371373
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
PROCR信号通路介导的血管新生在卵巢组织移植中的作用及机制研究
- 批准号:82371726
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
GASP-1通过Myostatin信号通路调控颏舌肌功能的作用及机制研究
- 批准号:82371131
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
- 批准号:82370865
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
双硫仑结合并抑制谷氨酸脱氢酶1活性调节Th17/Treg细胞平衡的作用与机制探究
- 批准号:82371755
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
犬尿氨酸酶KYNU参与非酒精性脂肪肝进展为肝纤维化的作用和机制研究
- 批准号:82370874
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Identifying Mechanisms Involved in Hydroxyurea-Mediated Reduction in Vaso-occlusive Adhesive Events in Sickle Cell Disease
确定羟基脲介导的镰状细胞病血管闭塞性粘附事件减少机制
- 批准号:
10724590 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Basic and Translational Mechanisms of Alloimmunization to RBC Transfusion. Project 2
红细胞输注同种免疫的基本和转化机制。
- 批准号:
10711669 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Identifying the molecular mechanisms of GEMIN5 mutations in a novel cerebellar ataxia syndrome
鉴定新型小脑共济失调综合征中 GEMIN5 突变的分子机制
- 批准号:
10753403 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Dissecting and targeting mechanisms of genomic instability-triggered immune evasion in RBM10-deficient non-small cell lung cancer
RBM10 缺陷型非小细胞肺癌基因组不稳定性触发免疫逃逸的剖析和靶向机制
- 批准号:
10658049 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
Mechanisms of Skeletal Muscle Pathogenesis in Myotonic Dystrophy Type 1
1 型强直性肌营养不良的骨骼肌发病机制
- 批准号:
10716746 - 财政年份:2023
- 资助金额:
$ 51.25万 - 项目类别:
The mechanisms, function, and evolution of neuronal alternative splicing in Caenorhabditis species
秀丽隐杆线虫神经元选择性剪接的机制、功能和进化
- 批准号:
RGPIN-2017-06573 - 财政年份:2022
- 资助金额:
$ 51.25万 - 项目类别:
Discovery Grants Program - Individual
The molecular and cellular mechanisms of the STAT3 mutation-mediated pulmonary disorder in Autosomal Dominant Hyper IgE Syndrome (AD-HIES)
常染色体显性高 IgE 综合征 (AD-HIES) STAT3 突变介导的肺部疾病的分子和细胞机制
- 批准号:
10393987 - 财政年份:2022
- 资助金额:
$ 51.25万 - 项目类别:
Proteomics of human vitreous to investigate mechanisms underlying the variability in anti-VEGF treatment response in neovascular AMD patients
人玻璃体蛋白质组学研究新生血管性 AMD 患者抗 VEGF 治疗反应差异的机制
- 批准号:
10507176 - 财政年份:2022
- 资助金额:
$ 51.25万 - 项目类别:
Mechanisms and consequences of 3'UTR isoform diversity in erythropoiesis
红细胞生成中 3UTR 亚型多样性的机制和后果
- 批准号:
10387610 - 财政年份:2022
- 资助金额:
$ 51.25万 - 项目类别:
Mechanisms and consequences of 3'UTR isoform diversity in erythropoiesis
红细胞生成中 3UTR 亚型多样性的机制和后果
- 批准号:
10705017 - 财政年份:2022
- 资助金额:
$ 51.25万 - 项目类别: