Next generation comparative methods

下一代比较方法

基本信息

  • 批准号:
    BB/L018594/1
  • 负责人:
  • 金额:
    $ 18.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Understanding evolutionary relationships and how characteristics of species (e.g. behaviours, genomes, morphological characteristics and proteins) evolve over time is a fundamental pursuit, either directly or indirectly, for all biologists. Computational tools to study how species characteristics change over time are called comparative methods. Among other things comparative methods are used to reconstruct ancestral forms, calculate how fast (or slow) characteristics change through time and to test if the evolution of species characteristics are correlated. Comparative methods are used thousands of time each year in scientific publications by biologists from all research areas. Recent advances in molecular sequencing technology and computer power have produced large and highly detailed maps of how species are related to each other. These maps are represented in a tree like form analogous to a family tree, they are known as phylogenies or phylogenetic trees. Phylogenetic trees are used in conjunction with species characteristics and comparative methods to help biologists infer historical processes of evolution.In 2013 two of the largest phylogenies were published, a near complete phylogeny of birds, comprising of almost 10,000 species and a large fish phylogeny of 8,000 species. These join a mammal phylogeny 5,000 species (2007), a 55,000 species tree of plants (2009) and a 6,000 species phylogeny of amphibians (2012). In contrast in the early 2000s a phylogeny of 100-200 species was considered very large. While the data and computing power have advanced inordinately over the last 20 years, the underlying statistics used in most comparative methods analysis has failed to keep pace. The statistical framework was laid down when a 30 species tree were considered large. This means that the vast majority of comparative methods assume that evolutionary processes are constant and homogeneous through time and through the tree. This assumption was not unreasonable when first introduced, as the available phylogenies consisted of a small number of closely related taxa which covered a narrow time period. Today the size of available phylogenies have grown enormously, they now cover more divergent groups and larger time frames and include a comprehensive sample of species. Using these trees we can now see that the homogenous assumption has been shown to produce incorrect results and hides important evolutionary information. Consider the evolution of body size in mammals, traditional comparative methods assume a homogeneous evolutionary process over hundreds of millions of years, affecting all species, at all time periods the same. But the evolutionary processes affecting some groups have been shown to be radically different, for example, flight in bats limit their body size, while being aquatic allows body size to increase. The assumption of a homogeneous process creates an averaging effect which is unable to detect important changes in evolutionary processes and produces results which are known to be wrong. This project will develop novel statistical methods which remove the assumption of a homogenous evolutionary process across the phylogenetic tree and through time. The methods will not only more accurately model heterogeneous evolutionary processes but of equal importance is their ability to automatically detect, without prior knowledge, the number and location of these shifts. The ability to automatically detect changes in evolutionary processes provides valuable biological insights allowing researchers to understand evolutionary processes on a finer scale than previously possible. These methods will directly benefit the thousands of researchers using comparative methods and bridge the gap between advances in data and the methods used to analyse them.
理解进化关系以及物种的特征(例如行为,基因组,形态特征和蛋白质)如何随时间演变是所有生物学家直接或间接的基本追求。研究物种特征如何随时间变化的计算工具被称为比较方法。除其他外,比较方法被用来重建祖先的形式,计算随着时间的推移特征变化的速度(或速度),并测试物种特征的进化是否相关。比较方法每年在科学出版物中被来自所有研究领域的生物学家使用数千次。分子测序技术和计算机能力的最新进展已经绘制出了大量非常详细的物种相互关系图。这些地图以类似于家谱的树形形式表示,它们被称为系统发育树或系统发育树。系统发育树与物种特征和比较方法结合使用,帮助生物学家推断进化的历史过程。2013年,两个最大的系统发育树发表,一个是几乎完整的鸟类系统发育树,包括近10,000个物种,另一个是大型鱼类系统发育树,包括8,000个物种。这些加入了哺乳动物5,000种(2007年),植物55,000种(2009年)和两栖动物6,000种(2012年)的物种发生学。相比之下,在21世纪初,100-200个物种的繁殖被认为是非常大的。虽然数据和计算能力在过去20年中取得了不协调的进步,但大多数比较方法分析中使用的基本统计数据却未能跟上步伐。当一棵30个物种的树被认为是大的时,统计框架被制定。这意味着,绝大多数比较方法都假设进化过程是恒定的,并且在时间和树中是同质的。这一假设在最初提出时并非不合理,因为现有的分类群由少数密切相关的类群组成,涵盖了一个狭窄的时间段。今天,现有的物种分类的规模已经大大增加,它们现在涵盖了更多不同的群体和更大的时间范围,并包括一个全面的物种样本。使用这些树,我们现在可以看到,同质假设已被证明会产生不正确的结果,并隐藏重要的进化信息。考虑到哺乳动物身体大小的进化,传统的比较方法假设了数亿年来的同质进化过程,影响了所有物种,在所有时间段都是一样的。但是影响某些群体的进化过程已经被证明是完全不同的,例如,蝙蝠的飞行限制了它们的身体大小,而水生允许身体大小增加。同质过程的假设产生了一种平均效应,这种效应无法检测进化过程中的重要变化,并产生已知错误的结果。这个项目将开发新的统计方法,消除跨越系统发育树和时间的同质进化过程的假设。这些方法不仅可以更准确地模拟异质进化过程,而且同样重要的是它们能够在没有先验知识的情况下自动检测这些转变的数量和位置。自动检测进化过程中变化的能力提供了有价值的生物学见解,使研究人员能够在比以前更精细的尺度上理解进化过程。这些方法将使成千上万使用比较方法的研究人员直接受益,并弥合数据进步与分析方法之间的差距。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Positive phenotypic selection inferred from phylogenies
Transitions between foot postures are associated with elevated rates of body size evolution in mammals.
足部姿势之间的转变与哺乳动物体型进化速度的加快有关。
The deep history of the number words.
数字词的深厚历史。
A cautionary note on the use of Ornstein Uhlenbeck models in macroevolutionary studies.
Territoriality, Social Bonds, and the Evolution of Communal Signaling in Birds
鸟类的领地性、社会纽带和公共信号的演变
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Meade其他文献

Intercultural competence : an appreciative inquiry
跨文化能力:欣赏性探究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Andrew Meade
  • 通讯作者:
    Andrew Meade
Trait macroevolution in the presence of covariates
性状宏进化在协变量存在的情况下
  • DOI:
    10.1038/s41467-025-59836-6
  • 发表时间:
    2025-05-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Mark Pagel;Andrew Meade
  • 通讯作者:
    Andrew Meade

Andrew Meade的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Meade', 18)}}的其他基金

Comparative methods for second generation sequence analysis
第二代序列分析的比较方法
  • 批准号:
    BB/K004344/1
  • 财政年份:
    2013
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Research Grant

相似国自然基金

细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Next Generation Majorana Nanowire Hybrids
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
  • 批准号:
    30470495
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    面上项目

相似海外基金

Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
  • 批准号:
    10761529
  • 财政年份:
    2023
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next Generation Gene-Gun Delivered DNA and RNA Immunotherapeutic Vaccines for Melanoma.
下一代基因枪提供针对黑色素瘤的 DNA 和 RNA 免疫治疗疫苗。
  • 批准号:
    10760452
  • 财政年份:
    2023
  • 资助金额:
    $ 18.25万
  • 项目类别:
Development of Next-Generation Blood-to-barcode (B2B) chip for In Vivo CRISPR-Based Discovery of Metastasis Regulators
开发下一代血液转条形码 (B2B) 芯片,用于体内基于 CRISPR 的转移调节因子发现
  • 批准号:
    10577058
  • 财政年份:
    2023
  • 资助金额:
    $ 18.25万
  • 项目类别:
A comprehensive next generation sequencing diagnostic tool for lung infection among hospitalized patients
住院患者肺部感染的综合下一代测序诊断工具
  • 批准号:
    10547598
  • 财政年份:
    2022
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next generation mosquito control through technology-driven trap development and artificial intelligence guided detection of mosquito breeding habitats
通过技术驱动的诱捕器开发和人工智能引导的蚊子繁殖栖息地检测来控制下一代蚊子
  • 批准号:
    10490916
  • 财政年份:
    2021
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next generation mosquito control through technology-driven trap development and artificial intelligence guided detection of mosquito breeding habitats
通过技术驱动的诱捕器开发和人工智能引导的蚊子繁殖栖息地检测来控制下一代蚊子
  • 批准号:
    10339610
  • 财政年份:
    2021
  • 资助金额:
    $ 18.25万
  • 项目类别:
Harnessing potent next-generation diarylquinolines for long-acting injectable formulations to prevent and treat tuberculosis
利用强效的下一代二芳基喹啉制备长效注射制剂来预防和治疗结核病
  • 批准号:
    10631987
  • 财政年份:
    2021
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next generation mosquito control through technology-driven trap development and artificial intelligence guided detection of mosquito breeding habitats
通过技术驱动的诱捕器开发和人工智能引导的蚊子繁殖栖息地检测来控制下一代蚊子
  • 批准号:
    10687199
  • 财政年份:
    2021
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next-Generation Ultrasound Localization Microscopy
下一代超声定位显微镜
  • 批准号:
    10039725
  • 财政年份:
    2020
  • 资助金额:
    $ 18.25万
  • 项目类别:
Next-generation ligandomics technology to globally map cellular ligands of the retina
下一代配体组学技术可全局绘制视网膜细胞配体图谱
  • 批准号:
    10081460
  • 财政年份:
    2020
  • 资助金额:
    $ 18.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了