The mechanisms of electroreception in bees

蜜蜂的电感受机制

基本信息

  • 批准号:
    BB/M011143/1
  • 负责人:
  • 金额:
    $ 81.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The ecological partnership between flowers and bees is profound; flowers evolved spectacular displays of colours and fragrant volatiles to attract pollinators, in particular bees, to secure pollen transfer and fertilisation. Many flowers include nutritious nectar as a special reward. Both bee and flower benefit from this remarkable example of cooperation. Thus, bees can see and smell flowers, but is that all? Our research changed its path when we marveled at the fact that a flower's pollen is capable of jumping towards an approaching bee and sticking to it. Driven by electrostatic forces, the pollen is transported from flower to flower. But is this the only way electricity can enhance pollination? Following these observations, a simple question came to our minds: does the bee know anything about the presence of this electrostatic field? Recently, we reported that bumblebees (Bombus terrestris) can detect and learn about floral electric fields. These fields are in fact floral cues, complementing colour, scent, temperature, humidity and shape. Floral fields are affected by the visit of bees, which are also electrically charged. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also showed that electric field information can improve a pollinator's memory of floral rewards. Because floral electric fields can change within seconds, their detection may facilitate rapid communication between flowers and their pollinators. Yet, how bees detect floral electric fields remains unknown. The goal of the proposed research is to identify the sensory mechanisms by which a bee detects electric fields. Do bees have a dedicated electric sensory organ, like many animals have dedicated ears to detect sounds? We hypothesise that bees use the fine hairs on their bodies to sense the presence of floral electrostatic fields. This is similar to the sensation we experience from the hairs on our arm rising in front of an old television set. We will measure the deflection of bee hair and record the activity of sensory neurones at their base. We will also train bees to recognise different electric fields and, after impairing the bending of these hairs, evaluate their recognition ability. Using mathematical modelling and laser vibration technology, we will also establish the kind of electric fields that bees are in effect sensitive to. Are they only sensitive to floral fields? This work will describe an entirely novel sense. The role this electrical sense plays in the life of bees including their mutualism with flowers, is still poorly understood. Do other important pollinators, such as flies, beetles and moths also sense floral electric fields? Our work will also change the way we understand our environment and its complexity, adding an electric component. Currently we are blind to this electrical ecology; yet this research project aims at providing ways to visualise this thus far elusive part of the natural world. Potentially, novel electrical measurement techniques, perhaps bio-inspired, will emerge from our investigations on detection of weak and local electric fields. As such, the interest of technologists may also be important to the long term continuation and diversification of our research and its impacts. Also, our research will enable further questions to be asked about the possible negative or positive, but currently unknown, impacts of man-made electric fields on pollinators, and other organisms, including plants, and the environment. As bees provide important and valuable pollination services for many crops consumed by humans, it may be very timely to better understand the biology of bees, and ensure they can remain safe and healthy in a rapidly changing and uncertain environment.
花蜂之间的生态伙伴关系是深刻的;花进化出了壮观的色彩和芳香的挥发物,以吸引传粉者,特别是蜜蜂,以确保花粉的传递和受精。许多花含有营养丰富的花蜜作为一种特殊的奖励。蜜蜂和花朵都从这种合作中获益。因此,蜜蜂可以看到和闻到花,但这就是全部吗?我们的研究改变了它的路径,因为我们惊讶于这样一个事实:一朵花的花粉能够跳到一只接近的蜜蜂身上,并粘在它身上。在静电力的驱动下,花粉从一朵花传递到另一朵花。但这是电力促进授粉的唯一途径吗?在这些观察之后,一个简单的问题出现在我们的脑海里:蜜蜂是否知道这个静电场的存在?最近,我们报道了大黄蜂(Bombus terrestris)可以探测和学习花的电场。这些领域实际上是花卉的线索,补充了颜色、气味、温度、湿度和形状。花田受到蜜蜂来访的影响,蜜蜂也是带电的。就像视觉线索一样,花电场表现出模式和结构的变化,这可以被大黄蜂识别。我们还发现电场信息可以提高传粉者对花奖励的记忆。因为花的电场可以在几秒钟内改变,它们的探测可以促进花和传粉者之间的快速交流。然而,蜜蜂是如何探测到花的电场的仍然是未知的。这项研究的目标是确定蜜蜂探测电场的感觉机制。蜜蜂是否有专门的电感觉器官,就像许多动物有专门的耳朵来探测声音一样?我们假设蜜蜂用它们身上的细毛来感知花朵静电场的存在。这类似于我们在旧电视机前看到手臂上的汗毛竖起来的感觉。我们将测量蜜蜂毛发的偏转并记录其基部感觉神经元的活动。我们还将训练蜜蜂识别不同的电场,并在削弱这些毛发的弯曲度后,评估它们的识别能力。利用数学建模和激光振动技术,我们还将建立蜜蜂实际上敏感的电场类型。它们只对花田敏感吗?这部作品将描述一种全新的感觉。这种电感在蜜蜂的生活中所起的作用,包括它们与花朵的共生关系,仍然知之甚少。其他重要的传粉者,如苍蝇、甲虫和飞蛾,也能感觉到花的电场吗?我们的工作还将改变我们理解环境及其复杂性的方式,增加一个电子元件。目前我们对这种电生态是盲目的;然而,这个研究项目的目的是提供一些方法来可视化这个迄今为止难以捉摸的自然世界的一部分。从我们对弱电场和局部电场的探测研究中,可能会出现新的电测量技术,也许是受生物启发的。因此,技术专家的兴趣可能对我们的研究及其影响的长期延续和多样化也很重要。此外,我们的研究将进一步提出关于人工电场对传粉者、其他生物(包括植物)和环境可能产生的负面或正面影响,但目前尚不清楚的问题。由于蜜蜂为人类消费的许多作物提供了重要而有价值的授粉服务,因此更好地了解蜜蜂的生物学,并确保它们在快速变化和不确定的环境中保持安全和健康可能是非常及时的。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bumblebee electric charge stimulates floral volatile emissions in Petunia integrifolia but not in Antirrhinum majus.
  • DOI:
    10.1007/s00114-021-01740-2
  • 发表时间:
    2021-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Montgomery C;Vuts J;Woodcock CM;Withall DM;Birkett MA;Pickett JA;Robert D
  • 通讯作者:
    Robert D
Electric Fields Elicit Ballooning in Spiders.
  • DOI:
    10.1016/j.cub.2018.05.057
  • 发表时间:
    2018-07-23
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Morley EL;Robert D
  • 通讯作者:
    Robert D
Urban and rural measurements of atmospheric potential gradient
  • DOI:
    10.1016/j.elstat.2018.11.006
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Matthews, J. C.;Wright, M. D.;Shallcross, D. E.
  • 通讯作者:
    Shallcross, D. E.
The Drivers of Heuristic Optimization in Insect Object Manufacture and Use.
  • DOI:
    10.3389/fpsyg.2018.01015
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Mhatre N;Robert D
  • 通讯作者:
    Robert D
Predictive modelling of honey bee foraging activity using local weather conditions
  • DOI:
    10.1007/s13592-018-0565-3
  • 发表时间:
    2018-06-01
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Clarke, Dominic;Robert, Daniel
  • 通讯作者:
    Robert, Daniel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Robert其他文献

Representing the deformation ∞–groupoid
表示变形 ∞–群曲面
Homotopy morphisms between convolution homotopy Lie algebras
卷积同伦李代数之间的同伦态射
Deformation Theory with Homotopy Algebra Structures on Tensor Products
张量积上同伦代数结构的变形理论
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Daniel Robert
  • 通讯作者:
    Daniel Robert
The next step in cicada audition: measuring pico-mechanics in the cicada's ear
蝉试听的下一步:测量蝉耳朵的微微力学
  • DOI:
    10.1242/jeb.033019
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    J. Windmill;Jérôme Sueur;Daniel Robert
  • 通讯作者:
    Daniel Robert
Intrinsic Gaussian Vector Fields on Manifolds
流形上的本征高斯矢量场

Daniel Robert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Robert', 18)}}的其他基金

The biophysics of aerial electroreception in arthropods
节肢动物空中电接收的生物物理学
  • 批准号:
    BB/T003235/1
  • 财政年份:
    2020
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Research Grant
Brazil - The biomechanics and biophotonics of plant health and development
巴西 - 植物健康和发育的生物力学和生物光子学
  • 批准号:
    BB/N022556/1
  • 财政年份:
    2016
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Research Grant
Understanding tympanal mechanics in insect ears
了解昆虫耳朵的鼓膜力学
  • 批准号:
    BB/I009671/1
  • 财政年份:
    2011
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Research Grant

相似海外基金

The molecular basis of electroreception across diverse organisms
不同生物体电感受的分子基础
  • 批准号:
    RGPIN-2021-03180
  • 财政年份:
    2022
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Discovery Grants Program - Individual
The molecular basis of electroreception across diverse organisms
不同生物体电感受的分子基础
  • 批准号:
    RGPIN-2021-03180
  • 财政年份:
    2021
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Discovery Grants Program - Individual
The molecular basis of electroreception across diverse organisms
不同生物体电感受的分子基础
  • 批准号:
    DGECR-2021-00130
  • 财政年份:
    2021
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Discovery Launch Supplement
Mechanisms of electroreception in Bumblebees and Honeybees
熊蜂和蜜蜂的电感受机制
  • 批准号:
    2594236
  • 财政年份:
    2021
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Studentship
The biophysics of aerial electroreception in arthropods
节肢动物空中电接收的生物物理学
  • 批准号:
    BB/T003235/1
  • 财政年份:
    2020
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Research Grant
The mechanisms and function of bumblebee electroreception
熊蜂电感受机制和功能
  • 批准号:
    1642938
  • 财政年份:
    2015
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Studentship
The origins of electroreception and nocturnality in the earliest known jawed vertebrates and their bearing on vertebrate diversification
已知最早的有颌脊椎动物的电感受和夜间活动的起源及其对脊椎动物多样化的影响
  • 批准号:
    DP140104161
  • 财政年份:
    2014
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Discovery Projects
Decoding electroreception with AMPA, NMDA and GABA channels
使用 AMPA、NMDA 和 GABA 通道解码电接收
  • 批准号:
    415887-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 81.03万
  • 项目类别:
    University Undergraduate Student Research Awards
Plasticity in electroreception
电接收的可塑性
  • 批准号:
    400913-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 81.03万
  • 项目类别:
    University Undergraduate Student Research Awards
Biophysical modeling of electroreception in weakly electric fish
弱电鱼电感受的生物物理模型
  • 批准号:
    121891-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 81.03万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了