Glia as regulators of auditory nerve function
神经胶质细胞作为听觉神经功能的调节者
基本信息
- 批准号:BB/M019322/1
- 负责人:
- 金额:$ 48.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mammals have an extraordinary ability to analyse the sounds within their environment and this can provide them with important advantages for survival. Humans hearing appears best-tuned to the range of sound frequencies that are used for speech-based communication, and this is also relevant for our appreciation of music. The sensory organ of hearing, the "cochlea", analyses incoming sound waves and sends electrically coded signals to the brain via groups of excitable cells within the auditory nerve. All the necessary information we require to understand the pitch, loudness, site of origin of sounds etc, are carried within the fine detail of the electrical code that the nerve passes to the brain. The nerve cells are able to work continually, at very high rates, and for many years without being replaced, because the environment they inhabit is kept stable by non-sensory cells called "glia". There is evidence from elsewhere in the nervous system that there is continual communication between nerve cells and their attendant glia, and that this can inform glia to be reactive to changes in nerve activity. The details of how this happens in the cochlea are unknown. Failures of this nerve-glia communication are suggested to cause death of nerve cells and conditions such as chronic pain. Glia are also responsible for coating the nerve cells with an insulating layer called "myelin". Myelin acts like the plastic coating on household wires, to improve electrical conductivity and to minimise energy losses as signals are carried over long distances. It is thought that the way in which myelin is laid down during development acts as an important cue for the maturation of nerve function. This has important implications for our understanding of the onset of sensory function in humans, and is particularly relevant to how hearing develops. This project is aimed towards a better understanding of glial function in the cochlea, and how glia preserve essential signalling in the auditory nerve. The data from this study would help explain some of the complexities of normal hearing, and may identify potential targets for therapies aimed at enhancing nerve cell survival in the inner ear. In addition the project would assist in the future design of devices such as cochlear implants. In some people who have lost their hearing the glia ensure the survival of some of the nerve cells in the deafened ear, even for years after deafness first occurs. This survival means the nerves can be electrically stimulated via a cochlear implant, providing the profoundly deaf with some hearing. Glia are clearly important in both the hearing and deaf ear, but it is not currently obvious how they carry out these essential roles. The findings of the study would not be specific to hearing though, as many of the mechanisms to be studied are common throughout the nervous system. A more comprehensive picture of how glial cells function would be of value to other scientists and clinicians studying the nervous system, including the other sense organs and the brain.
哺乳动物具有分析环境中声音的非凡能力,这可以为它们的生存提供重要的优势。人类的听觉似乎最适合用于语音交流的声音频率范围,这也与我们对音乐的欣赏有关。听觉的感觉器官--“耳蜗”--分析传入的声波,并通过听神经内的一组可兴奋的细胞向大脑发送电子编码信号。我们理解音调、响度、声音来源等所需的所有必要信息,都包含在神经传递给大脑的电码的细节中。神经细胞能够以非常高的速度持续工作,并持续多年而不被取代,因为它们所居住的环境是由称为“神经胶质”的非感觉细胞保持稳定的。来自神经系统其他地方的证据表明,神经细胞和伴随它们的神经胶质细胞之间有持续的通讯,这可以让神经胶质细胞对神经活动的变化做出反应。这是如何在耳蜗里发生的细节还不得而知。这种神经-胶质细胞通讯的失败被认为是导致神经细胞死亡和慢性疼痛等情况的原因。神经胶质细胞还负责在神经细胞上覆盖一层名为“髓鞘”的绝缘层。髓磷脂的作用就像家用线上的塑料涂层,提高了导电性,并在信号远距离传输时将能量损失降至最低。人们认为,髓鞘在发育过程中的形成方式是神经功能成熟的重要线索。这对于我们理解人类感觉功能的开始有重要的意义,特别是与听力如何发展有关。这个项目的目的是为了更好地了解耳蜗神经胶质细胞的功能,以及神经胶质细胞如何保存听神经中的基本信号。这项研究的数据将有助于解释正常听力的一些复杂性,并可能确定旨在增强内耳神经细胞存活的治疗的潜在靶点。此外,该项目还将协助今后设计人工耳蜗等设备。在一些听力丧失的人中,胶质细胞确保了耳聋患者耳朵中的一些神经细胞的存活,即使在耳聋首次发生后的几年也是如此。这种存活意味着神经可以通过植入人工耳蜗电刺激,为深度失聪的人提供一些听力。胶质细胞显然对听力和聋耳都很重要,但目前还不清楚它们是如何发挥这些重要作用的。然而,这项研究的结果并不是专门针对听力的,因为许多将要研究的机制在整个神经系统中都是常见的。更全面地了解神经胶质细胞的功能,对于研究神经系统(包括其他感觉器官和大脑)的其他科学家和临床医生来说是有价值的。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Prolonged Purinergic Receptor Activation in Cochlear Glial Cells
延长嘌呤能受体激活对耳蜗胶质细胞的影响
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Prades S
- 通讯作者:Prades S
The molecular physiology of fast spiking behaviour in the auditory nerve
听神经快速尖峰行为的分子生理学
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Jagger D
- 通讯作者:Jagger D
In Vitro Characterization of Cochlear Optogenetics.
耳蜗光遗传学的体外表征。
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Afonso CD
- 通讯作者:Afonso CD
Evidence for P2X7 Receptor-Mediated Ionic Currents and Macromolecule Uptake in Cochlear Glial Cells
P2X7 受体介导的离子电流和耳蜗胶质细胞大分子摄取的证据
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Prades S
- 通讯作者:Prades S
Functional Characterization of Glial P2X7 Receptors in the Rat Cochlea
大鼠耳蜗神经胶质 P2X7 受体的功能表征
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Prades S
- 通讯作者:Prades S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Jagger其他文献
Daniel Jagger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Jagger', 18)}}的其他基金
Protein sorting in the maturation of inner ear cells
内耳细胞成熟过程中的蛋白质分选
- 批准号:
BB/R017638/1 - 财政年份:2019
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
相似海外基金
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
- 批准号:
10086990 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Collaborative R&D
Quinone compounds as novel plant growth regulators
醌类化合物作为新型植物生长调节剂
- 批准号:
24K01718 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Conference: Algebraic Cycles, Motives and Regulators
会议:代数环、动机和调节器
- 批准号:
2401025 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Standard Grant
Meal timing and energy restriction as regulators of central and peripheral human rhythms
进餐时间和能量限制作为中枢和外周人类节律的调节器
- 批准号:
BB/Y006852/1 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
sRNAs: Critical yet overlooked regulators of bacterial denitrification
sRNA:细菌反硝化的关键但被忽视的调节因子
- 批准号:
BB/Y006607/1 - 财政年份:2024
- 资助金额:
$ 48.65万 - 项目类别:
Research Grant
Identification of Novel Epigenetic Regulators of lymphocyte Development
淋巴细胞发育的新型表观遗传调节因子的鉴定
- 批准号:
10723159 - 财政年份:2023
- 资助金额:
$ 48.65万 - 项目类别:
Defining Nuclear H2O2 Regulation by Covalent Regulators
通过共价调节剂定义核 H2O2 调节
- 批准号:
10725269 - 财政年份:2023
- 资助金额:
$ 48.65万 - 项目类别:
Multi-omic phenotyping of human transcriptional regulators
人类转录调节因子的多组学表型分析
- 批准号:
10733155 - 财政年份:2023
- 资助金额:
$ 48.65万 - 项目类别:
Illumination of TAAR2 Location, Function and Regulators
TAAR2 位置、功能和调节器的阐明
- 批准号:
10666759 - 财政年份:2023
- 资助金额:
$ 48.65万 - 项目类别:
Cellular surfaces as regulators of biomolecular condensate assembly
细胞表面作为生物分子凝聚体组装的调节剂
- 批准号:
10639551 - 财政年份:2023
- 资助金额:
$ 48.65万 - 项目类别: