Super-Beacons and Beacon-STORM: a new generation of small tunable photoswitching probes and Super-Resolution approaches.

Super-Beacons 和 Beacon-STORM:新一代小型可调谐光开关探头和超分辨率方法。

基本信息

  • 批准号:
    BB/M022374/1
  • 负责人:
  • 金额:
    $ 46.32万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Microscopy has been the major tool in cell biology. Its inception in the 16th century led to the first 'wave of discovery' - the finding and comprehension of cells and their internal structure. However, fundamental limitations on modern light microscopes (e.g. widefield and confocal) prevent us from accurately resolving structures smaller than 300 nm. It took three centuries to achieve a second 'wave of discovery' - the development of electron microscopes (EM) able to bypass this resolution limit, offering a new view into the realm of small biological complexes, e.g. endocytic vesicles and viruses. Nevertheless there are two main limitations to EM as it does not allow to: 1) image live-cells and 2) use molecules labelled with fluorescent tags. We are now at the forefront of a 'third wave of discovery' brought about by the development of Super-Resolution light microscopy - a range of methods that approach the resolution accuracy of EM but with the capability of live cell imaging and molecule-specific labelling. However, Super-Resolution imaging is not trivial and can only be achieved by a fine balance between three key components: 1) highly-sensitive often bespoke microscopes; 2) optimised fluorescent labels; 3) advanced computational analysis. So far, the development of these three factors by the research community has not been fully coupled - e.g. we have reached a stage where computer processes and hardware have been formalised for video-rate high-speed Super-Resolution, but there is still a lack of suitable non-toxic fluorescent probes. This hinders the potential of Super-Resolution microscopy as a widespread live-cell imaging tool.This project addresses this issue, by integrating the development of 1) a new generation of small probes with tuneable photoswtiching kinetics designed for high-speed low-toxicity Super-Resolution imaging; 2) a high-speed imaging system able to modify the imaging microenvironment by adjusting probe properties in real-time; 3) Super-Resolution acquisition software able to make data-driven decisions to optimally balance the probe's photokinetics for best speed and resolution.Recently, we have prototyped a new type of probe called Super-Beacon. Its structural properties allow to convert almost any synthetic fluorophore into high-performance probes with adjustable photokinetics. Based on the principles of Super-Beacons, we aim to design a new generation of probes optimised for high-speed multi-colour Super-Resolution microscopy. In parallel, we will develop a new analytical (software) and imaging (optical hardware) framework - called Beacon-STORM (BeaST) - that takes advantage of Super-Beacons to achieve an improved level of resolution, speed and low photo- and chemical-damage in Super-Resolution microscopy. Keeping up with our track record of providing critical tools enabling Super-Resolution imaging to the research community, we will follow an open access policy and provide the tools and framework for researchers to easily adapt and use Super-Beacons and BeaST for their own research.As a proof-of-principle of the application of these two highly complementary technologies, we will target a fundamental and open question in eukaryotic cell biology - what is the trigger and required structural remodelling of receptors at the cell membrane to promote clathrin-mediated endocytosis? Using viral like particles as model cargo, we will address this question by super-resolving in vivo the nanoarchitecture of early endocytic sites, mapping the cellular factors involved in vesicular formation. This question can only be optimally answered by an approach such as the one proposed, as it requires a system capable of resolving, in live-cells, the vesicle formation site nano-organization with minimal disruption of its behaviour. Understanding this interplay is critical to uncover the basis of endocytosis and understand how cells deal with signalling noise, such as stochastic receptor clustering.
显微镜一直是细胞生物学的主要工具。它在16世纪的出现引发了第一波“发现浪潮”--发现和理解细胞及其内部结构。然而,现代光学显微镜的基本限制(例如宽视场和共焦)使我们无法准确分辨小于300 nm的结构。花了三个世纪的时间才实现了第二次“发现浪潮”-电子显微镜(EM)的发展能够绕过这个分辨率限制,为小型生物复合体提供了新的视角,例如内吞囊泡和病毒。然而,EM有两个主要的限制,因为它不允许:1)成像活细胞和2)使用荧光标记的分子。我们现在处于超分辨率光学显微镜发展带来的“第三波发现”的最前沿-一系列方法接近EM的分辨率精度,但具有活细胞成像和分子特异性标记的能力。然而,超分辨率成像并不简单,只能通过三个关键组件之间的精细平衡来实现:1)高灵敏度的定制显微镜; 2)优化的荧光标记; 3)先进的计算分析。到目前为止,研究界对这三个因素的开发还没有完全耦合-例如,我们已经达到了一个阶段,计算机处理和硬件已经正式用于视频速率高速超分辨率,但仍然缺乏合适的无毒荧光探针。本项目旨在解决这一问题,将1)新一代具有可调光开关动力学的小探针,设计用于高速低毒性超分辨率成像; 2)高速成像系统,能够通过实时调整探针特性来修改成像微环境; 3)超分辨率采集软件能够做出数据驱动的决策,以最佳地平衡探针的光动力学,从而获得最佳的速度和分辨率。最近,我们已经开发了一种称为Super-Beacon的新型探针原型。其结构特性允许将几乎任何合成荧光团转化为具有可调节光动力学的高性能探针。基于Super-Bearing的原理,我们的目标是设计新一代针对高速多色超分辨率显微镜进行优化的探针。与此同时,我们将开发一种新的分析(软件)和成像(光学硬件)框架-称为Beacon-STORM(BeaST)-利用Super-Beacon来提高超分辨率显微镜的分辨率,速度和低光损伤。为了保持我们为研究界提供超分辨率成像关键工具的记录,我们将遵循开放获取政策,为研究人员提供工具和框架,以便他们轻松地适应和使用Super-Beasting和BeaST进行自己的研究。作为这两种高度互补技术应用的原理证明,我们将针对真核细胞生物学中的一个基本的和开放的问题--什么是细胞膜上受体的触发和所需的结构重塑,以促进网格蛋白介导的内吞作用?使用病毒样颗粒作为模型货物,我们将解决这个问题,通过超解析在体内的纳米结构的早期内吞网站,映射参与囊泡形成的细胞因子。这个问题只能通过一种方法来最佳地回答,例如所提出的方法,因为它需要一种能够在活细胞中以最小的行为干扰来解决囊泡形成位点纳米组织的系统。了解这种相互作用对于揭示内吞作用的基础和了解细胞如何处理信号噪声(如随机受体聚集)至关重要。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infection Counter: Automated Quantification of in Vitro Virus Replication by Fluorescence Microscopy.
  • DOI:
    10.3390/v8070201
  • 发表时间:
    2016-07-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Culley S;Towers GJ;Selwood DL;Henriques R;Grove J
  • 通讯作者:
    Grove J
Quantitative mapping and minimization of super-resolution optical imaging artifacts.
  • DOI:
    10.1038/nmeth.4605
  • 发表时间:
    2018-04
  • 期刊:
  • 影响因子:
    48
  • 作者:
    Culley S;Albrecht D;Jacobs C;Pereira PM;Leterrier C;Mercer J;Henriques R
  • 通讯作者:
    Henriques R
SRRF: Universal live-cell super-resolution microscopy.
VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy.
  • DOI:
    10.1038/srep29132
  • 发表时间:
    2016-07-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Gray RD;Beerli C;Pereira PM;Scherer KM;Samolej J;Bleck CK;Mercer J;Henriques R
  • 通讯作者:
    Henriques R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ricardo Henriques其他文献

Processive movement of Staphylococcus aureus essential septal peptidoglycan synthases is independent of FtsZ treadmilling and drives cell constriction
金黄色葡萄球菌必需隔膜肽聚糖合酶的过程运动独立于 FtsZ 跑步并驱动细胞收缩
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Simon Schäper;António D. Brito;Bruno M. Saraiva;Georgia R. Squyres;Matthew J. Holmes;Ethan C. Garner;Zach Hensel;Ricardo Henriques;M. G. Pinho
  • 通讯作者:
    M. G. Pinho
Education and equitable economic development
教育与公平经济发展
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Barros;Ricardo Henriques;R. Mendonça
  • 通讯作者:
    R. Mendonça
Standard and Super-Resolution Bioimaging Data Analysis: A Primer
标准和超分辨率生物成像数据分析:入门
  • DOI:
    10.1002/9781119096948
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    48
  • 作者:
    A. Wheeler;Ricardo Henriques
  • 通讯作者:
    Ricardo Henriques
DL4MicEverywhere: Deep learning for microscopy made flexible, shareable, and reproducible
DL4MicEverywhere:显微镜深度学习变得灵活、可共享和可重复
  • DOI:
    10.1101/2023.11.19.567606
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Iván Hidalgo;Joanna W. Pylvänäinen;Mariana G Ferreira;Craig T Russell;Ignacio Arganda;Guillaume Jacquemet;Ricardo Henriques;Estibaliz Gómez
  • 通讯作者:
    Estibaliz Gómez
ULTEMAT: A mobile framework for smart ecological momentary assessments and interventions
  • DOI:
    10.1016/j.invent.2017.07.001
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pepijn van de Ven;Hugh O’Brien;Ricardo Henriques;Michel Klein;Rachel Msetfi;John Nelson;Artur Rocha;Jeroen Ruwaard;Donal O’Sullivan;Heleen Riper; on behalf of the E-COMPARED Consortium
  • 通讯作者:
    on behalf of the E-COMPARED Consortium

Ricardo Henriques的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ricardo Henriques', 18)}}的其他基金

Democratising Live-Cell Adaptive Super-Resolution Microscopy based on SRRF
基于 SRRF 的活细胞自适应超分辨率显微镜大众化
  • 批准号:
    BB/R021805/1
  • 财政年份:
    2019
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant
An accessible framework to achieve multi-dimensional live-cell super-resolution high-content screening
实现多维活细胞超分辨率高内涵筛选的可访问框架
  • 批准号:
    BB/P027431/1
  • 财政年份:
    2017
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Research Grant

相似海外基金

Commercialising sustainable, battery-free digital wayfinding beacons for indoor navigation
用于室内导航的可持续、无电池数字寻路信标的商业化
  • 批准号:
    10106010
  • 财政年份:
    2024
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Collaborative R&D
Project BlackoutFleet: An integrated fleet and driver safety iOT platform utilising beacons and smartphones.
Project BlackoutFleet:利用信标和智能手机的集成车队和驾驶员安全物联网平台。
  • 批准号:
    10032479
  • 财政年份:
    2022
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Collaborative R&D
“Beacons in the Night” unveiling how galaxies light up dark matter
– 夜间的灯塔 – 揭示星系如何照亮暗物质
  • 批准号:
    DP210101945
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Discovery Projects
Targeted Hyperpolarized Molecular Beacons for Colorectal Cancer Detection
用于结直肠癌检测的靶向超极化分子信标
  • 批准号:
    10495268
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
The BEACONS Platform - Comprehensive biomarker analysis for prediction of clinical course and management in acute coagulopathy in sepsis, trauma, cardiac arrest, and COVID-19
BEACONS 平台 - 综合生物标志物分析,用于预测脓毒症、创伤、心脏骤停和 COVID-19 急性凝血病的临床病程和管理
  • 批准号:
    454967
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Fellowship Programs
Targeted Hyperpolarized Molecular Beacons for Colorectal Cancer Detection
用于结直肠癌检测的靶向超极化分子信标
  • 批准号:
    10696093
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
Targeted Hyperpolarized Molecular Beacons for Colorectal Cancer Detection
用于结直肠癌检测的靶向超极化分子信标
  • 批准号:
    10371429
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
Sustainable, wireless asset-tracking and monitoring system for hospitals and supply-chains using self-powered sensor beacons
使用自供电传感器信标的医院和供应链可持续无线资产跟踪和监控系统
  • 批准号:
    10004572
  • 财政年份:
    2021
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Small Business Research Initiative
COVID-19: Comprehensive biomarker analysis for prediction of clinical course and patient treatment outcomes (COVID-BEACONS)
COVID-19:用于预测临床病程和患者治疗结果的综合生物标志物分析 (COVID-BEACONS)
  • 批准号:
    429234
  • 财政年份:
    2020
  • 资助金额:
    $ 46.32万
  • 项目类别:
    Operating Grants
Privacy Challenges of Genomic Data-Sharing Beacons and Solutions
基因组数据共享信标和解决方案的隐私挑战
  • 批准号:
    10223439
  • 财政年份:
    2020
  • 资助金额:
    $ 46.32万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了