Role of Mitochondrial Reactive Oxygen Species in Stress Adaptation during Ageing
线粒体活性氧在衰老过程中应激适应中的作用
基本信息
- 批准号:BB/M023311/1
- 负责人:
- 金额:$ 36.89万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nowadays, ageing is one of the main questions that modern biology needs to answer. We need to understand how and especially why we age to fully understand the process of evolution. In addition, a growing ageing population is one of the main problems in United Kingdom. The only way to alleviate the suffering caused by age-related degenerative disease (e.g. Alzheimer, Parkinson, cancer or diabetes) is to fully understand the underlying evolutionary forces, which drive ageing and design strategies to delay the ageing process. Mitochondria are the powerhouses of the cell generating most of the energy required for survival. These small cell factories deteriorate during ageing, failing to deliver the energy required for cellular maintenance. The reason why mitochondria fail is currently unknown, but it could be related with the way they produce energy. To operate, mitochondria use oxygen as final electron acceptor. Normally, this oxygen is safely managed by mitochondria being completely reduced to water with four electrons and two protons. However, in a minimal number of occasions oxygen is incompletely reduced (with less than four electrons) producing the so-called Reactive Oxygen Species (ROS) that can damage all cellular components.The Mitochondrial Free Radical Theory of Ageing (MFRTA) was a popular theory to explain ageing in the past century. MFRTA proposes that ROS, produced as by-products of respiration, cause oxidative damage that accumulates and causes ageing. MFRTA is mainly supported by correlative data. Oxidative damage accumulates with age, and mtROS levels are altered in degenerative disease associated with ageing. However, direct experimental evidence fails to support MFRTA. Increasing mtROS does not shorten lifespan, and antioxidant supplementation has poor effects on health. It has been shown that mtROS are instrumental for cell differentiation, the immune response and stress adaptation. In conclusion, the contribution of mtROS to ageing is unclear. Because of the importance ROS have in pathological and non-pathological situations it is imperative to understand the physiological role they play in vivo.In this proposal, we aim to understand in detail the role ROS play in normal physiology and in stress adaptation, particularly during ageing. Based on our preliminary results, we hypothesize that there are two different types of ROS populations. One population is good, and its generation is associated with the activation of mechanisms that clean up the cells. When these ROS are suppressed quality control mechanisms do not work properly and cellular homeostasis is lost. This would explain the negative consequences associated with supplementation or overexpression of antioxidants. The other population is deleterious, and it is produced only when mechanisms of mitochondrial quality control fail. These ROS are characterized by a very aggressive chemistry led by high levels of free iron and hydroxyl radicals. Using the power of fruit fly genetics we will generate new transgenic models that will allow a precise manipulation of these two ROS populations in vivo. We will use this new technology to characterize the downstream physiological responses activated by ROS. We aim to find the exact pathways and genes that may be targeted by specific drugs or genetic interventions. These interventions should help to extend healthy lifespan. Since essential metabolic pathways are highly conserved during evolution, it is expected that similar strategies may be implemented in humans to delay ageing and prevent the onset of age-related diseases.
衰老是现代生物学需要回答的主要问题之一。我们需要了解我们是如何变老的,尤其是为什么变老,以充分理解进化的过程。此外,人口老龄化是英国的主要问题之一。减轻与年龄有关的退行性疾病(如阿尔茨海默病、帕金森病、癌症或糖尿病)造成的痛苦的唯一方法是充分了解推动衰老的潜在进化力量,并设计延缓衰老过程的战略。线粒体是细胞的发电站,产生生存所需的大部分能量。这些小型细胞工厂在老化过程中会退化,无法提供细胞维持所需的能量。线粒体失败的原因目前尚不清楚,但可能与它们产生能量的方式有关。线粒体利用氧作为最终的电子受体来运作。正常情况下,这些氧气由线粒体安全地管理,完全还原为具有四个电子和两个质子的水。然而,在极少数情况下,氧被不完全还原(少于四个电子),产生所谓的活性氧(ROS),可以破坏所有细胞成分。线粒体自由基衰老理论(MFRTA)是过去世纪解释衰老的流行理论。MFRTA提出,作为呼吸副产品产生的ROS会导致氧化损伤,累积并导致衰老。MFRTA主要有相关数据支持。氧化损伤随着年龄的增长而积累,在与衰老相关的退行性疾病中,mtROS水平会发生变化。然而,直接的实验证据未能支持MFRTA。增加线粒体活性氧不会缩短寿命,抗氧化剂补充剂对健康的影响很小。研究表明,线粒体ROS有助于细胞分化、免疫应答和应激适应。总之,mtROS对衰老的贡献尚不清楚。由于ROS在病理和非病理情况下的重要性,因此必须了解它们在体内发挥的生理作用,在本提案中,我们的目标是详细了解ROS在正常生理和应激适应中的作用,特别是在衰老过程中。根据我们的初步结果,我们假设有两种不同类型的ROS群体。一个种群是好的,它的产生与清理细胞的机制的激活有关。当这些活性氧被抑制时,质量控制机制就无法正常工作,细胞稳态就会丧失。这可以解释与补充或过度使用抗氧化剂相关的负面后果。另一个群体是有害的,只有当线粒体质量控制机制失败时才会产生。这些ROS的特征在于由高水平的游离铁和羟基自由基导致的非常具有攻击性的化学。利用果蝇遗传学的力量,我们将产生新的转基因模型,这将允许在体内精确操纵这两个ROS种群。我们将使用这种新技术来表征由ROS激活的下游生理反应。我们的目标是找到特定药物或遗传干预可能靶向的确切途径和基因。这些干预措施应有助于延长健康寿命。由于基本代谢途径在进化过程中是高度保守的,因此预计可以在人类中实施类似的策略来延缓衰老并预防与年龄有关的疾病的发生。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A functional connection between dyskerin and energy metabolism.
- DOI:10.1016/j.redox.2017.11.003
- 发表时间:2018-04
- 期刊:
- 影响因子:11.4
- 作者:Angrisani A;Matrone N;Belli V;Vicidomini R;Di Maio N;Turano M;Scialò F;Netti PA;Porcellini A;Furia M
- 通讯作者:Furia M
Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis.
SQSTM1/p62的氧化介导了氧化还原状态与蛋白质稳态之间的联系。
- DOI:10.1038/s41467-017-02746-z
- 发表时间:2018-01-17
- 期刊:
- 影响因子:16.6
- 作者:Carroll B;Otten EG;Manni D;Stefanatos R;Menzies FM;Smith GR;Jurk D;Kenneth N;Wilkinson S;Passos JF;Attems J;Veal EA;Teyssou E;Seilhean D;Millecamps S;Eskelinen EL;Bronowska AK;Rubinsztein DC;Sanz A;Korolchuk VI
- 通讯作者:Korolchuk VI
Sphingosine kinase 1 overexpression induces MFN2 fragmentation and alters mitochondrial matrix Ca2+ handling in HeLa cells.
- DOI:10.1016/j.bbamcr.2019.06.006
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:I. Pulli;C. Löf;T. Blom;T. Blom;Muhammad Yasir Asghar;Muhammad Yasir Asghar;Taru Lassila;Taru Lassila;Nils Bäck;K-L Lin;J. Nyström;Kati Kemppainen;Diana M. Toivola;Eric Dufour;Alberto Sanz;Helen M. Cooper;J. Parys;K. Törnquist;K. Törnquist
- 通讯作者:I. Pulli;C. Löf;T. Blom;T. Blom;Muhammad Yasir Asghar;Muhammad Yasir Asghar;Taru Lassila;Taru Lassila;Nils Bäck;K-L Lin;J. Nyström;Kati Kemppainen;Diana M. Toivola;Eric Dufour;Alberto Sanz;Helen M. Cooper;J. Parys;K. Törnquist;K. Törnquist
Editorial: "Mitochondrial coenzyme Q homeostasis: Signalling, respiratory chain stability and diseases.".
社论:“线粒体辅酶 Q 稳态:信号传导、呼吸链稳定性和疾病。”。
- DOI:10.1016/j.freeradbiomed.2021.04.005
- 发表时间:2021
- 期刊:
- 影响因子:7.4
- 作者:Navas P
- 通讯作者:Navas P
Coenzyme Q redox signalling and longevity
- DOI:10.1016/j.freeradbiomed.2021.01.018
- 发表时间:2021-01-18
- 期刊:
- 影响因子:7.4
- 作者:Scialo, Filippo;Sanz, Alberto
- 通讯作者:Sanz, Alberto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alberto Sanz Montero其他文献
Alberto Sanz Montero的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alberto Sanz Montero', 18)}}的其他基金
Why do mitochondria produce more ROS when we age?
为什么随着年龄的增长,线粒体会产生更多的 ROS?
- 批准号:
BB/W006774/1 - 财政年份:2022
- 资助金额:
$ 36.89万 - 项目类别:
Research Grant
Role of autophagy in the accumulation of defective mitochondria during ageing
自噬在衰老过程中缺陷线粒体积累中的作用
- 批准号:
BB/R008167/2 - 财政年份:2020
- 资助金额:
$ 36.89万 - 项目类别:
Research Grant
Role of autophagy in the accumulation of defective mitochondria during ageing
自噬在衰老过程中缺陷线粒体积累中的作用
- 批准号:
BB/R008167/1 - 财政年份:2018
- 资助金额:
$ 36.89万 - 项目类别:
Research Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The Role of Mitochondrial Reactive Oxygen Species in Skeletal Muscle Adaptation to Endurance and Resistance Exercise Training in Animals and Humans
线粒体活性氧在动物和人类骨骼肌适应耐力和抗阻运动训练中的作用
- 批准号:
548063-2020 - 财政年份:2022
- 资助金额:
$ 36.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Divergences in the mitochondrial oxidative phosphorylation process and the role they play on reactive oxygen species production and aging
线粒体氧化磷酸化过程的差异及其对活性氧产生和衰老的作用
- 批准号:
RGPIN-2021-02924 - 财政年份:2022
- 资助金额:
$ 36.89万 - 项目类别:
Discovery Grants Program - Individual
Divergences in the mitochondrial oxidative phosphorylation process and the role they play on reactive oxygen species production and aging
线粒体氧化磷酸化过程的差异及其对活性氧产生和衰老的作用
- 批准号:
RGPIN-2021-02924 - 财政年份:2021
- 资助金额:
$ 36.89万 - 项目类别:
Discovery Grants Program - Individual
The Role of Mitochondrial Reactive Oxygen Species in Skeletal Muscle Adaptation to Endurance and Resistance Exercise Training in Animals and Humans
线粒体活性氧在动物和人类骨骼肌适应耐力和抗阻运动训练中的作用
- 批准号:
548063-2020 - 财政年份:2021
- 资助金额:
$ 36.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
10618865 - 财政年份:2020
- 资助金额:
$ 36.89万 - 项目类别:
The Role of Mitochondrial Reactive Oxygen Species in Skeletal Muscle Adaptation to Endurance and Resistance Exercise Training in Animals and Humans
线粒体活性氧在动物和人类骨骼肌适应耐力和抗阻运动训练中的作用
- 批准号:
548063-2020 - 财政年份:2020
- 资助金额:
$ 36.89万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
9889770 - 财政年份:2020
- 资助金额:
$ 36.89万 - 项目类别:
The role of nicotinamide mononucleotide dependent mitochondrial reactive oxygen species generation in acute brain injury
烟酰胺单核苷酸依赖性线粒体活性氧生成在急性脑损伤中的作用
- 批准号:
10454777 - 财政年份:2020
- 资助金额:
$ 36.89万 - 项目类别:
Role of Mitochondrial Reactive Oxygen Species in ageing and age-related diseases
线粒体活性氧在衰老和年龄相关疾病中的作用
- 批准号:
1960141 - 财政年份:2017
- 资助金额:
$ 36.89万 - 项目类别:
Studentship
The role of mitochondrial reactive oxygen species in innate immune signaling
线粒体活性氧在先天免疫信号传导中的作用
- 批准号:
8417443 - 财政年份:2012
- 资助金额:
$ 36.89万 - 项目类别: