Development of a proteomic platform to facilitate the generation of new and improved vaccines for use in aquaculture.

开发蛋白质组平台,以促进水产养殖用新型和改良疫苗的产生。

基本信息

  • 批准号:
    BB/M026345/1
  • 负责人:
  • 金额:
    $ 24.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

With concerns over dwindling wild fish stocks and the UK government recommending that we all eat two portions of fish a week as part of a healthy diet, we are increasingly turning to aquaculture, the farming of fish and shellfish, as a sustainable way of filling our needs. Over the last 20 years, aquaculture in the UK has developed into an industry worth well over £1 billion per year, dominated by Scottish salmon farming. To ensure that the industry can meet increasing demands for sustainable fish, the government is aiming to grow UK aquaculture production 25% by 2020. Infectious diseases are the most significant threat to the stability and future expansion of the aquaculture industry; much like in human cities, occasionally previous bacterial and viral infections can re-emerge in a fish farm or new infections can spread from other places. An infection outbreak can cause massive financial losses due to fish death, costs of expensive interventions, or the poor quality of the resulting fish flesh. Also, as for us humans, the best way to prevent disease outbreaks on fish farms is by vaccination; this strategy is so effective for bacterial diseases that the use of antibiotics in aquaculture has almost stopped completely. In fact, every salmon farmed in Scotland will have been vaccinated at least once in its life. While very successful for some diseases, fish vaccination in its current form also has a number of drawbacks; primary among these is that each fish has to be individually injected with a vaccine, which is quite a challenge considering more than 150,000 tonnes of salmon are produced each year! This is not only costly and time-consuming but can cause the fish to become stressed making them susceptible to other opportunistic infections. Second are the potential side-effects of the immune system stimulants (or 'adjuvants') present in the vaccination; the optimal formulation will have adjuvants strong enough to induce a robust immune response but not so strong that they cause side-effects impacting the quality or welfare of the fish. Finally, some diseases have proven more challenging than others in terms of developing effective vaccines.For these reasons, many scientists are trying to find better ways to administer fish vaccines and adjuvants, while looking for new ways to vaccinate against fish diseases where no vaccine yet exists. However, vaccine development and validation is a slow process that requires extensive scientific testing with living fish. Therefore, there is great interest in the development of approaches that will reduce the number of fish required for vaccine testing, while making the testing process more robust at the same time. With this in mind, our project aims to adapt a new 'proteomic' technology currently used in the study of human disease - to quickly and accurately monitor fish immune responses. The method allows extremely precise measurements of protein levels and will allow us to accurately monitor key factors involved in an effective immune response such as antibodies. Our approach will allow miniscule blood samples to be taken from the same fish many times during an immune response, which is an improvement on comparable existing methods that require much more blood and hence a lot more fish to be sacrificed during an experiment.Overall, our approach will enable scientists in the aquaculture sector to accurately monitor changes in fish immune protein levels in response to new and existing vaccines - allowing them to gauge the strength of immune responses and to predict the level of immunity conferred, whilst using fewer fish than current testing protocols. This in turn should help new vaccines and novel methods of administration to come online much more quickly, which will feedback to have positive effects on the sustainability and growth of aquaculture in the UK and worldwide.
随着人们对野生鱼类资源减少的担忧,以及英国政府建议我们每个人每周吃两份鱼作为健康饮食的一部分,我们越来越多地转向水产养殖,即养殖鱼类和贝类,以此作为满足我们需求的一种可持续方式。在过去的20年里,英国的水产养殖业已经发展成为一个以苏格兰三文鱼养殖业为主的产业,年产值远远超过10亿英镑。为了确保该行业能够满足日益增长的对可持续鱼类的需求,政府的目标是到2020年将英国水产养殖产量提高25%。传染病是对水产养殖业稳定和未来扩张的最大威胁;与人类城市非常相似,以前的细菌和病毒感染偶尔会在养鱼场重新出现,或者新的感染可能会从其他地方传播。由于鱼类死亡、昂贵的干预费用或由此产生的鱼肉质量差,感染暴发可能造成巨大的经济损失。此外,对于我们人类来说,预防养鱼场疾病爆发的最好方法是接种疫苗;这种策略对细菌疾病非常有效,以至于在水产养殖中几乎完全停止了抗生素的使用。事实上,苏格兰养殖的每一条三文鱼一生中都至少接种过一次疫苗。虽然对一些疾病非常成功,但目前形式的鱼类疫苗也有一些缺点;主要的缺点是每条鱼都必须单独注射疫苗,考虑到每年生产超过15万吨三文鱼,这是一个相当大的挑战!这不仅昂贵和耗时,而且可能导致鱼类变得紧张,使它们容易受到其他机会性感染。第二是疫苗接种中存在的免疫系统刺激剂(或“佐剂”)的潜在副作用;最佳配方将具有足以诱导强大免疫反应的佐剂,但又不会强烈到导致影响鱼的质量或福利的副作用。最后,事实证明,在开发有效疫苗方面,一些疾病比其他疾病更具挑战性。出于这些原因,许多科学家正在努力寻找更好的方法来接种鱼类疫苗和佐剂,同时寻找新的方法来预防尚不存在疫苗的鱼类疾病。然而,疫苗的开发和验证是一个缓慢的过程,需要用活鱼进行广泛的科学测试。因此,人们对开发方法非常感兴趣,这些方法将减少疫苗测试所需的鱼的数量,同时使测试过程更加稳健。考虑到这一点,我们的项目旨在采用目前在人类疾病研究中使用的一种新的“蛋白质组”技术--快速而准确地监测鱼类的免疫反应。这种方法可以非常精确地测量蛋白质水平,并使我们能够准确地监测有效免疫反应中涉及的关键因素,如抗体。我们的方法将允许在免疫反应期间从同一条鱼中多次采集微量血液样本,这是对现有方法的改进,现有方法需要更多的血液,因此在实验中需要牺牲更多的鱼。总体而言,我们的方法将使水产养殖部门的科学家能够准确监测鱼类免疫蛋白水平对新疫苗和现有疫苗的反应变化-使他们能够衡量免疫反应的强度和预测授予的免疫水平,同时使用的鱼比目前的检测方案更少。这反过来将有助于新疫苗和新的管理方法更快地上线,这将对英国和世界各地水产养殖业的可持续性和增长产生积极影响。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interrogation of vertebrate plasma proteomes from three basal lineages provides insights into the evolution of immune protection
对来自三个基础谱系的脊椎动物血浆蛋白质组的研究提供了对免疫保护进化的见解
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bakke F.K.
  • 通讯作者:
    Bakke F.K.
High-throughput proteomic profiling of the fish liver following bacterial infection.
  • DOI:
    10.1186/s12864-018-5092-0
  • 发表时间:
    2018-10-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Causey DR;Pohl MAN;Stead DA;Martin SAM;Secombes CJ;Macqueen DJ
  • 通讯作者:
    Macqueen DJ
Proteomic comparison of selective breeding and growth hormone transgenesis in fish: Unique pathways to enhanced growth.
  • DOI:
    10.1016/j.jprot.2018.08.013
  • 发表时间:
    2019-02-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Causey DR;Kim JH;Stead DA;Martin SAM;Devlin RH;Macqueen DJ
  • 通讯作者:
    Macqueen DJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Macqueen其他文献

Developmental and Comparative Immunology
  • DOI:
    10.1016/0165-2427(93)90131-m
  • 发表时间:
    1993-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Macqueen
  • 通讯作者:
    Daniel Macqueen

Daniel Macqueen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Macqueen', 18)}}的其他基金

Immune cell dynamics predictive of vaccine protection in Atlantic salmon
免疫细胞动力学预测大西洋鲑鱼的疫苗保护
  • 批准号:
    BB/W005859/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Research Grant
AquaLeap: Innovation in Genetics and Breeding to Advance UK Aquaculture Production
AquaLeap:遗传学和育种创新促进英国水产养殖生产
  • 批准号:
    BB/S004181/1
  • 财政年份:
    2019
  • 资助金额:
    $ 24.4万
  • 项目类别:
    Research Grant

相似海外基金

Neonatal gut-on-a-chip platform for high content drug testing and precision medicine
用于高内涵药物测试和精准医学的新生儿肠道芯片平台
  • 批准号:
    10491072
  • 财政年份:
    2022
  • 资助金额:
    $ 24.4万
  • 项目类别:
The Cancer Proteome Atlas: an Integrated Bioinformatics Resource for Functional Cancer Proteomic Data
癌症蛋白质组图谱:功能性癌症蛋白质组数据的综合生物信息学资源
  • 批准号:
    10653202
  • 财政年份:
    2022
  • 资助金额:
    $ 24.4万
  • 项目类别:
A Novel Fluorescence Imaging Platform to Predict Response to Combinatorial Tyrosine Kinase Inhibitors
预测组合酪氨酸激酶抑制剂反应的新型荧光成像平台
  • 批准号:
    10356738
  • 财政年份:
    2022
  • 资助金额:
    $ 24.4万
  • 项目类别:
Neonatal gut-on-a-chip platform for high content drug testing and precision medicine
用于高内涵药物测试和精准医学的新生儿肠道芯片平台
  • 批准号:
    10674890
  • 财政年份:
    2022
  • 资助金额:
    $ 24.4万
  • 项目类别:
Leveraging Multi-Scale Deep Phenotyping and Applied Machine Learning to Predict Senescent Cell Burden in Humans
利用多尺度深度表型分析和应用机器学习来预测人类衰老细胞负担
  • 批准号:
    10684954
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
Extracellular Vesicle Proteomic Fingerprinting of Ovarian Cancer for Early Detection with a Nanoengineered Microsystem
卵巢癌细胞外囊泡蛋白质组指纹图谱用于纳米工程微系统的早期检测
  • 批准号:
    10621734
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
Extracellular Vesicle Proteomic Fingerprinting of Ovarian Cancer for Early Detection with a Nanoengineered Microsystem
卵巢癌细胞外囊泡蛋白质组指纹图谱用于纳米工程微系统的早期检测
  • 批准号:
    10373086
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
Extracellular Vesicle Proteomic Fingerprinting of Ovarian Cancer for Early Detection with a Nanoengineered Microsystem
卵巢癌细胞外囊泡蛋白质组指纹图谱用于纳米工程微系统的早期检测
  • 批准号:
    10199594
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
Platform technologies for scalable highly multiplexed proteomic phenotyping of the brain
用于可扩展的高度多重大脑蛋白质组表型分析的平台技术
  • 批准号:
    10369777
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
Extracellular Vesicle Proteomic Fingerprinting of Ovarian Cancer for Early Detection with a Nanoengineered Microsystem
卵巢癌细胞外囊泡蛋白质组指纹图谱用于纳米工程微系统的早期检测
  • 批准号:
    10737826
  • 财政年份:
    2021
  • 资助金额:
    $ 24.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了