Molecular mechanism and engineering of P450 peroxygenases for synthetic biology applications

用于合成生物学应用的 P450 过氧化酶的分子机制和工程

基本信息

  • 批准号:
    BB/N006275/1
  • 负责人:
  • 金额:
    $ 58.88万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The proposed project will characterize an important new type of enzyme catalyst with uses in the production of biofuel molecules, as well as other chemicals with applications in industry. Two representatives of a new class of heme-containing enzymes will be produced and their structural and catalytic properties studied in detail. These enzymes are termed "peroxygenases" due to their ability to use hydrogen peroxide as a substrate; and the enzymes studied here (named P450 KR and P450 OleT) use peroxide to convert fatty acids into the valuable hydrocarbon molecules alkenes. The alkenes (of appropriate size) can be used in car engines as fuel, and have multiple other applications in the chemicals industry; e.g. in making plastics (and other polymers) and alcohols. In work underpinning this application, we have developed methods to produce the KR and OleT P450 enzymes (using genes cloned from different bacteria that naturally produce the enzymes) and for purifying the P450s. This has enabled us to establish that the ranges of lengths of fatty acids recognized by OleT and KR are different, such that the KR P450 produces a group of shorter chain alkenes than can OleT. These enzymes are thus complementary and together are able to produce a wide range of different alkenes using cheap fatty acids as substrates. In this project, we will analyse how these enzymes function to convert fatty acids into alkenes. This will be done using both computational/modelling procedures (to understand the chemistry involved and which parts of the enzymes are crucial for the alkene production process) and through a combination of structural, spectroscopic and fast reaction methods (to determine how the enzymes fold and bind their substrates, how fast the alkene production reaction occurs, and to understand the mechanism involved). These studies are essential to enable us to rationalize how this important biochemical transformation of fatty acids to alkenes occurs, and will also be crucial to allow protein engineering (i.e. mutating enzymes in a targeted way) to be done to improve binding of selected fatty acids (particularly short chain lipids that generate more volatile alkenes with better properties as biofuels) and to disfavour unwanted side reactions where a different product (hydroxylated fatty acid) is formed. Having engineered the KR and OleT enzymes to optimize their reactivity, different routes to driving their function will be explored - since another way of driving their reactions is by providing them with different proteins ("redox partners") that are used by other classes of P450 enzymes (e.g. those involved in human drug metabolism and steroid synthesis). Once the most efficient means of driving these enzymes is identified, work will be done to produce the desired short- to mid-chain alkenes using bacterial cells that make the OleT/KR P450s at high levels. Quantification of alkenes will be done to determine production levels and to establish the efficiency of generation of different chain length alkenes in an industrial-type fermentation process. In parallel studies, the ability of native and engineered forms of the OleT/KR P450s to produce alkene or hydroxylated products from different types of fatty acids (including polyunsaturated and branched chain lipids) will also be determined, in order to establish whether diverse types of lipids can be substrates for these enzymes, and to evaluate their potential to make distinct types of products with industrial applications. This project thus has both fundamental and applied aspects: first to enable a detailed understanding of the structure/mechanism of two members of a biotechnologically important class of enzyme catalyst (enabling us to engineer the OleT and KR enzymes rationally for improved performance), and second to demonstrate their versatility and uses in synthetic biology for industrial exploitation - most notably in generating alkenes for biofuel and chemical products applications.
拟议的项目将描述一种重要的新型酶催化剂,并在生产生物燃料分子以及其他在工业中应用的化学品。将产生一类新的含血红素酶的新代表,并详细研究其结构和催化特性。这些酶由于其将过氧化氢用作底物的能力而称为“过氧酶”。此处研究的酶(称为P450 KR和P450 OLET)使用过氧化酶将脂肪酸转化为有价值的烃分子烯烃。 (适当尺寸)的烯烃可用于汽车发动机作为燃料,并在化学工业中还具有多种应用。例如制作塑料(和其他聚合物)和醇。在基于此应用的工作中,我们开发了产生KR和OLET P450酶的方法(使用自然产生酶的不同细菌克隆的基因)并纯化P450。这使我们能够确定OLET和KR识别的脂肪酸长度范围不同,因此KR P450产生的一组较短的链烯烃与OLET相比。因此,这些酶是互补的,并且能够使用廉价的脂肪酸作为底物产生各种不同的烷烃。在这个项目中,我们将分析这些酶如何将脂肪酸转化为烷烃。这将使用计算/建模程序(了解涉及的化学和哪些部分对于烯烃生产过程至关重要)以及结构,光谱和快速反应方法的组合(确定酶如何折叠并结合其底物,烯烃生产反应的快速反应以及了解机制)。这些研究对于使我们能够合理化脂肪酸对烷烃的这种重要生物化学转化至关重要,并且对于允许蛋白质工程(即以靶向方式突变酶)也至关重要形成不同产物(羟化脂肪酸)的地方。设计了KR和OLET酶以优化其反应性后,将探索不同的驱动其功能的途径 - 因为推动其反应的另一种方法是为它们提供不同类别的P450酶使用的不同蛋白质(“ Redox伴侣”)(例如,与人类药物代谢和类固醇相关的蛋白质相关)。一旦确定了最有效的驱动这些酶的方法,就可以使用将OLET/KR P450高水平的细菌细胞产生所需的短至中链烯烃。将进行烷烃的量化,以确定生产水平并确定在工业型发酵过程中不同链长烷烃产生的效率。在平行研究中,还将确定来自不同类型的脂肪酸(包括多不饱和和分支链脂质)的橄榄/KR P450的天然和工程形式的能力,以建立多种类型的脂质可以评估这些enzymes的替代产品,并确定各种类型的脂质,以使这些enzymes的替代品是否构建,也将确定各种类型的产品,并确定这些enzymes的潜在产品,并能够确定这些产品的各种产品。因此,该项目既具有基本和应用方面:首先可以详细了解生物技术重要的酶催化剂类别的结构/机制(使我们能够以合理的效果来设计olet和kr酶,以改善性能),其次是为生物学而产生的,用于生成的生物学,最大程度地用于构成生物学的产品 - 大多数化学生物学,并在合成的生物学中使用 - 大多数化学性能 - 申请。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure and function of the cytochrome P450 peroxygenase enzymes.
  • DOI:
    10.1042/bst20170218
  • 发表时间:
    2018-02-19
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Munro AW;McLean KJ;Grant JL;Makris TM
  • 通讯作者:
    Makris TM
Structural and catalytic properties of the peroxygenase P450 enzyme CYP152K6 from Bacillus methanolicus.
  • DOI:
    10.1016/j.jinorgbio.2018.08.002
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Girvan HM;Poddar H;McLean KJ;Nelson DR;Hollywood KA;Levy CW;Leys D;Munro AW
  • 通讯作者:
    Munro AW
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Munro其他文献

High-temperature adsorption of carbon monoxide and hydrocarbon gases over nickel and platinum catalysts
镍和铂催化剂高温吸附一氧化碳和碳氢化合物气体
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Jackson;N. Hussain;Andrew Munro
  • 通讯作者:
    Andrew Munro
Spectral and physical properties of electrochemically formed colored layers on titanium covered with clearcoats.
覆盖有透明涂层的钛上电化学形成的彩色层的光谱和物理特性。
  • DOI:
    10.1021/am2000196
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Andrew Munro;M. Cunningham;G. Jerkiewicz
  • 通讯作者:
    G. Jerkiewicz
Sixty years of second language aptitude research: A systematic quantitative literature review
第二语言能力研究六十年:系统定量文献综述
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    J. Chalmers;Susana A. Eisenchlas;Andrew Munro;Andrea C. Schalley
  • 通讯作者:
    Andrea C. Schalley

Andrew Munro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Munro', 18)}}的其他基金

Bacterial P450 engineering for production of high value antibacterials
用于生产高价值抗菌药物的细菌 P450 工程
  • 批准号:
    NE/V010328/1
  • 财政年份:
    2021
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Construction of potent and specific inhibitors of M. tuberculosis redox enzymes using fragment screening methods
使用片段筛选方法构建结核分枝杆菌氧化还原酶的有效和特异性抑制剂
  • 批准号:
    BB/R009961/1
  • 财政年份:
    2018
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Interrogation of the catalytic properties of MhuD - a crucial heme oxygenase in Mycobacterium tuberculosis
结核分枝杆菌中重要的血红素加氧酶 MhuD 催化特性的探讨
  • 批准号:
    BB/P010180/1
  • 财政年份:
    2017
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
A fragment based screening approach to rationalizing M. tuberculosis P450 molecular selectivity
基于片段的筛选方法合理化结核分枝杆菌 P450 分子选择性
  • 批准号:
    BB/I019227/1
  • 财政年份:
    2012
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Molecular reconstruction of flavocytochrome P450 BM3
黄细胞色素 P450 BM3 的分子重建
  • 批准号:
    BB/K001884/1
  • 财政年份:
    2012
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Structure and mechanism of a key enzyme in M. tuberculosis cell envelope biogenesis
结核分枝杆菌细胞包膜生物合成关键酶的结构和机制
  • 批准号:
    BB/I020160/1
  • 财政年份:
    2011
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Elucidating and exploiting cytochrome P450 TxtE-catalysed tryptophan nitration in thaxtomin phytotoxin biosynthesis
阐明和利用 thaxtomin 植物毒素生物合成中细胞色素 P450 TxtE 催化的色氨酸硝化
  • 批准号:
    BB/H006265/1
  • 财政年份:
    2010
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Characterization of a superior biocatalyst for pravastatin production
用于普伐他汀生产的优质生物催化剂的表征
  • 批准号:
    BB/G014329/1
  • 财政年份:
    2009
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
A novel regulator of human apoptosis
人类细胞凋亡的新型调节剂
  • 批准号:
    BB/G008558/1
  • 财政年份:
    2009
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant
Directed evolution approaches to generation of an industrially applicable biocatalyst
生成工业适用生物催化剂的定向进化方法
  • 批准号:
    BB/F00883X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 58.88万
  • 项目类别:
    Research Grant

相似国自然基金

基于过氧化氢隧道工程的类固醇羟化P450过加氧酶的理性设计与分子机制研究
  • 批准号:
    32371311
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于柱芳烃超分子主客体识别体系的电解液工程设计及离子传输机制研究
  • 批准号:
    52303283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
辽宁优势特色虾/贝工程化食品基质的构建及其分子互作与递送机制
  • 批准号:
    U22A20538
  • 批准年份:
    2022
  • 资助金额:
    255.00 万元
  • 项目类别:
    联合基金项目
AA9家族裂解多糖单加氧酶(LPMOs)协同降解纤维素的分子机制及其蛋白质工程
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
AA9家族裂解多糖单加氧酶(LPMOs)协同降解纤维素的分子机制及其蛋白质工程
  • 批准号:
    32271526
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Unlocking New Chemistries in Extant Enzymes for Synthesizing Bioactive Molecules
解锁现有酶中用于合成生物活性分子的新化学成分
  • 批准号:
    10784165
  • 财政年份:
    2023
  • 资助金额:
    $ 58.88万
  • 项目类别:
Temperature and thermogustatory preferences
温度和热味觉偏好
  • 批准号:
    10735227
  • 财政年份:
    2023
  • 资助金额:
    $ 58.88万
  • 项目类别:
The role of USP27X-Cyclin D1 axis in HER2 Therapy Resistant Breast Cancer
USP27X-Cyclin D1 轴在 HER2 治疗耐药乳腺癌中的作用
  • 批准号:
    10658373
  • 财政年份:
    2023
  • 资助金额:
    $ 58.88万
  • 项目类别:
Mechanism of immune response to muscle-directed AAV gene transfer
肌肉定向 AAV 基因转移的免疫反应机制
  • 批准号:
    10717750
  • 财政年份:
    2023
  • 资助金额:
    $ 58.88万
  • 项目类别:
Decoding the fundamental principles of autonomous clocks: mechanism, design and function
解读自主时钟的基本原理:机制、设计和功能
  • 批准号:
    10685116
  • 财政年份:
    2023
  • 资助金额:
    $ 58.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了