Mechanisms involved in plant resistance to the green peach aphid Myzus persicae
植物对桃蚜 Myzus persicae 的抗性机制
基本信息
- 批准号:BB/N009169/1
- 负责人:
- 金额:$ 42.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The green peach aphid (GPA) Myzus persicae and other sap-feeding insects, including other aphids, whiteflies, psyllids, froghoppers, leafhoppers, planthoppers and Lygus bugs, are economically important pests worldwide. They do not only cause direct feeding damage, but also transmit more than half (> 500) of all described plant viruses and a variety of economically important plant pathogenic bacteria. A recent example is a froghopper-transmitted bacterial pathogen (Xylella fastidiosa), which is threatening olive tree plantations in Italy and may spread to other olive-growing regions in the Mediterranean (the Guardian, 8 Jan 2015). Whereas Bacillus thuringiensis (Bt) toxin transgenic crops (grown in USA, Brazil and Asia) are resistant to major pests, such as moths and beetles, Bt is not effective against sap-feeding insects. Therefore, sap-feeding insect pests have increased on these transgenic crops.GPA alone colonizes over 400 plant species of more than 50 plant families and this aphid species transmits more than 100 different plant viruses, including 6 distinct sugar beet viruses.Sap-feeding insects are predominantly controlled by extensive insecticide applications causing these insects to develop resistance to the insecticides. GPA has developed resistance to 71 different insecticides and, as such, holds the record of most insect resistances among all insects. Neonicotinoids are one of few insecticides that can effectively control GPA. However, GPA clones resistant to these chemicals have been identified in several parts of Europe. Moreover, neonicotinoids are being taken off the market owing to increasingly restrictive (EU and national) legislation fuelled by concerns of consumers about insecticide toxicity to human health and the ecosystem. Uncontrolled, GPA can reduce sugar beet yields by 45%, making this crop uneconomic in Europe. A similar fate is predicted for other crops susceptible to GPA, including oilseed rape, broccoli, cauliflower, cabbage, tomato, potato, pepper, sugar beet etc. To reduce insecticide use and safeguard the food supply in Europe and worldwide, alternative methods to control GPA and other sap-feeding insects, such as the generation of plant varieties that are resistant to GPA, are essential and need to become available in the coming few years. We anticipate that a major impact of this proposal is to make a major leap forward to achieve this goal.Approach: GPA and other insects produce virulence proteins (effectors) in their saliva that interact with plant proteins (targets) to modulate key plant processes, such as plant defense responses, that make the plants more susceptible to aphid colonization. Hence, we wish to increase plant resistance to aphids by preventing effector-target interactions through the introduction of effector-insensitive target alleles into plants using transgenic and non-transgenic approaches.If successful, this project will open up a plethora of new avenues to obtain resistance to GPA, and possibility other sap-feeding insects, of multiple economically important plant species. This project is a collaboration with SESVanderHave UK LTD (SV), a leading breeder of sugar beet varieties with a proven performance worldwide. A goal of this proposal is for SV to develop resources and technologies so that they will be in an excellent position to take advantage of the new discoveries made in this project and obtain GPA-resistance sugar beet more quickly. Currently low numbers of students are being trained in (a combination of) entomology, agriculturally important insect pests and plant breeding. Therefore, we will engage young students in our project. Since we anticipate that this project will provide an example of how plant-breeding approaches can generate sustainable resistance to insect pests, we will organize outreach activities to engage plants breeders and downstream processors of multiple crops in our approach.
桃蚜(Myzus persicae)和其他取食汁液的昆虫,包括其他蚜虫、白蝇、木虱、蛙蝗、叶蝉、飞虱和盲蝽,是世界范围内重要的经济害虫。它们不仅造成直接取食损害,而且还传播半数以上的已知植物病毒和多种具有重要经济意义的植物致病菌。最近的一个例子是蛙鼠传播的细菌病原体(苛食木杆菌),它威胁着意大利的橄榄树种植园,并可能蔓延到地中海的其他橄榄种植区(卫报,2015年1月8日)。苏云金芽孢杆菌(Bt)毒素转基因作物(在美国、巴西和亚洲种植)对飞蛾和甲虫等主要害虫具有抗性,但Bt对取食汁液的昆虫无效。因此,取食汁液的害虫对这些转基因作物的危害有所增加。仅GPA就在50多个植物科的400多种植物中定殖,这种蚜虫传播100多种不同的植物病毒,包括6种不同的甜菜病毒。取食汁液的昆虫主要是通过广泛施用杀虫剂来控制的,这导致这些昆虫对杀虫剂产生抗药性。GPA已经对71种不同的杀虫剂产生了抗性,因此,它是所有昆虫中最具抗性的昆虫。新烟碱类杀虫剂是为数不多的能有效防治GPA的杀虫剂之一。然而,在欧洲的几个地区已经发现了对这些化学物质具有抗性的GPA克隆。此外,由于消费者担心杀虫剂对人类健康和生态系统的毒性,欧盟和各国的立法越来越严格,新烟碱类正在退出市场。不受控制的GPA可以使甜菜产量减少45%,使这种作物在欧洲不经济。预计其他易受GPA影响的作物也将面临类似的命运,包括油菜、西兰花、花椰菜、卷心菜、西红柿、土豆、辣椒、甜菜等。为了减少杀虫剂的使用,保障欧洲和世界范围内的粮食供应,控制GPA和其他取食汁液的昆虫的替代方法,如产生抗GPA的植物品种,是必不可少的,需要在未来几年内实现。我们预计,这项建议的一个主要影响是在实现这一目标方面取得重大飞跃。方法:GPA和其他昆虫在其唾液中产生毒力蛋白(效应器),与植物蛋白(靶标)相互作用,调节关键的植物过程,如植物防御反应,使植物更容易受到蚜虫定植的影响。因此,我们希望通过使用转基因和非转基因方法将效应不敏感的靶等位基因引入植物中,通过防止效应-靶标相互作用来提高植物对蚜虫的抗性。如果成功,该项目将开辟大量新的途径,以获得对GPA的抗性,并可能获得多种经济上重要的植物物种的其他食液昆虫的抗性。该项目是与SESVanderHave英国有限公司(SV)合作的,该公司是甜菜品种的领先育种商,在全球范围内具有成熟的表现。本提案的目标是为SV开发资源和技术,使他们能够更好地利用本项目的新发现,更快地获得抗gpa甜菜。目前,很少有学生接受昆虫学、农业重要害虫和植物育种(综合)方面的培训。因此,我们将让年轻学生参与我们的项目。由于我们预计该项目将提供一个例子,说明植物育种方法如何产生对害虫的可持续抗性,我们将组织外展活动,让植物育种者和多种作物的下游加工者参与我们的方法。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saskia Hogenhout其他文献
Saskia Hogenhout的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saskia Hogenhout', 18)}}的其他基金
SAP-ERASER - Targeted Protein Degradation using SAP effectors
SAP-ERASER - 使用 SAP 效应器进行靶向蛋白质降解
- 批准号:
EP/X024415/1 - 财政年份:2022
- 资助金额:
$ 42.33万 - 项目类别:
Research Grant
Resistance: DNA methylation and the evolution of pesticide-resistance genes in aphids
抗性:蚜虫中 DNA 甲基化和农药抗性基因的进化
- 批准号:
BB/R009481/1 - 财政年份:2018
- 资助金额:
$ 42.33万 - 项目类别:
Research Grant
Functional Genomics of Aphid Adaptation to Plant Species
蚜虫适应植物物种的功能基因组学
- 批准号:
BB/L002108/1 - 财政年份:2014
- 资助金额:
$ 42.33万 - 项目类别:
Research Grant
Dissecting phytoplasma effector adaptation to plant targets (Bilateral BBSRC-FAPESP application)
剖析植原体效应子对植物靶标的适应(双边 BBSRC-FAPESP 应用)
- 批准号:
BB/K002848/1 - 财政年份:2013
- 资助金额:
$ 42.33万 - 项目类别:
Research Grant
Functional characterization of secreted proteins on the SAP11 region of the Aster Yellows phytoplasma strain Witches' Broom genome
紫菀黄植原体菌株女巫扫帚基因组 SAP11 区域分泌蛋白的功能表征
- 批准号:
BB/G001928/1 - 财政年份:2008
- 资助金额:
$ 42.33万 - 项目类别:
Research Grant
相似海外基金
New approaches to visualizing freezing behaviors in plant tissues and their mechanisms involved
可视化植物组织冻结行为及其机制的新方法
- 批准号:
17H03763 - 财政年份:2017
- 资助金额:
$ 42.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deciphering Molecular Mechanisms Involved in Plant Volatile Emission
破译植物挥发物排放的分子机制
- 批准号:
1655438 - 财政年份:2017
- 资助金额:
$ 42.33万 - 项目类别:
Continuing Grant
Molecular mechanisms involved in plant light adaptation
植物光适应的分子机制
- 批准号:
17K07451 - 财政年份:2017
- 资助金额:
$ 42.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms involved in the control of root pathogens by fungal antagonists isolated from compost: synergy between antagonism and plant induced resistance
从堆肥中分离的真菌拮抗剂控制根部病原体的机制:拮抗作用与植物诱导的抗性之间的协同作用
- 批准号:
2719-2007 - 财政年份:2013
- 资助金额:
$ 42.33万 - 项目类别:
Discovery Grants Program - Individual
Studies on the regulatory mechanisms involved in biocontrol factor expression in plant-associated bacteria
植物相关细菌生防因子表达调控机制研究
- 批准号:
22780042 - 财政年份:2010
- 资助金额:
$ 42.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mechanisms involved in the control of root pathogens by fungal antagonists isolated from compost: synergy between antagonism and plant induced resistance
从堆肥中分离的真菌拮抗剂控制根部病原体的机制:拮抗作用与植物诱导的抗性之间的协同作用
- 批准号:
2719-2007 - 财政年份:2010
- 资助金额:
$ 42.33万 - 项目类别:
Discovery Grants Program - Individual
The molecular mechanisms of a regulatory pathway involved in plant cell division
植物细胞分裂调控途径的分子机制
- 批准号:
21770040 - 财政年份:2009
- 资助金额:
$ 42.33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Mechanisms involved in the control of root pathogens by fungal antagonists isolated from compost: synergy between antagonism and plant induced resistance
从堆肥中分离的真菌拮抗剂控制根部病原体的机制:拮抗作用与植物诱导的抗性之间的协同作用
- 批准号:
2719-2007 - 财政年份:2009
- 资助金额:
$ 42.33万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of genetic mechanisms that generate structural diversity of a group of sesquiterpenes involved in plant-microbe interactions
阐明产生一组参与植物-微生物相互作用的倍半萜烯结构多样性的遗传机制
- 批准号:
20580117 - 财政年份:2008
- 资助金额:
$ 42.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanisms involved in the control of root pathogens by fungal antagonists isolated from compost: synergy between antagonism and plant induced resistance
从堆肥中分离的真菌拮抗剂控制根部病原体的机制:拮抗作用与植物诱导的抗性之间的协同作用
- 批准号:
2719-2007 - 财政年份:2008
- 资助金额:
$ 42.33万 - 项目类别:
Discovery Grants Program - Individual