Plasticity of inhibitory synaptic transmission in the hippocampus

海马抑制性突触传递的可塑性

基本信息

  • 批准号:
    BB/N013956/1
  • 负责人:
  • 金额:
    $ 72.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

The building blocks of the brain are nerves cells, also called neurons, connected to each other by synapses. Neurons form two categories: excitatory neurons promote activity in their connected neurons, whereas inhibitory neurons depress activity. Even though inhibitory neurons are less numerous than excitatory neurons (20%), they play a central role in brain function and computation. Disruption of inhibitory neurons leads to an imbalance in excitation and inhibition that can, in turn, lead to diseases such as epilepsy, schizophrenia and autism spectrum disorders. Thus, understanding what regulates the strength of excitatory and inhibitory synapses is an important research goal. Interestingly, although there has been much focus on plasticity of excitatory synapses, plasticity of inhibitory synapses has been largely neglected. In this BBSRC project, we aim to investigate the phenomenology and function of inhibitory synaptic plasticity. The hippocampus is a brain area that plays an important role in episodic memory and spatial navigation. Neuronal network activity in the hippocampus exhibits multiple discrete states that are identified by rhythmic oscillations and perform distinct computational functions. Memories are initially encoded during exploration when theta (5-12Hz) and gamma (30-120Hz) frequency oscillations are prevalent whereas consolidation of memories occurs offline in periods of transient sharp wave ripple (~200Hz) activity during rest or sleep. Specific subtypes of inhibitory neurons have been found to be active in these distinct behavioural states and, intriguingly, inhibitory plasticity has been shown to depend on the precise co-ordination of inhibitory and excitatory neuron firing and on the state of the neural network. This indicates that different behavioural states are likely to trigger distinct forms of inhibitory plasticity at specific inhibitory synapses. However, there is very limited evidence for the role of inhibitory plasticity in the hippocampus.Our hypotheses are that plasticity of inhibitory synapses: a) can regulate network computations, b) is specific to the inhibitory neurons subtypes and c) determines input selectivity for excitatory neurons in a behavioural state dependent manner. We propose a joint effort from an experimental team, which has expertise in synaptic plasticity in the hippocampus, with a computational team that recently proposed a theoretical model of inhibitory plasticity. By a tight interaction allowing the computational model to be informed by and to guide experiments and experiments to refine the model, we aim to investigate how neural activity engages inhibitory plasticity depending on the inhibitory neuron subtype, and how inhibitory plasticity shapes network computations in the hippocampus. This work will provide important information on the mechanisms and function of inhibitory plasticity that will ultimately improve our understanding of how inhibition may be modified in disease states potentially leading to new therapies.
大脑的组成部分是神经细胞,也称为神经元,通过突触相互连接。神经元分为两类:兴奋性神经元促进其连接的神经元的活动,而抑制性神经元抑制活动。尽管抑制性神经元的数量少于兴奋性神经元(20%),但它们在大脑功能和计算中发挥着核心作用。抑制性神经元的破坏导致兴奋和抑制的不平衡,这反过来会导致癫痫、精神分裂症和自闭症谱系障碍等疾病。因此,了解是什么调节兴奋性和抑制性突触的强度是一个重要的研究目标。有趣的是,尽管人们对兴奋性突触的可塑性有很多关注,但抑制性突触的可塑性却在很大程度上被忽视了。在这个BBSRC项目中,我们的目的是研究抑制性突触可塑性的现象学和功能。海马体是在情景记忆和空间导航中起重要作用的大脑区域。海马体中的神经元网络活动表现出多个离散状态,这些状态通过节律性振荡来识别,并执行不同的计算功能。当θ(5- 12 Hz)和γ(30- 120 Hz)频率振荡普遍时,记忆最初在探索期间被编码,而记忆的巩固在休息或睡眠期间的瞬时尖波涟漪(~ 200 Hz)活动期间离线发生。已经发现抑制性神经元的特定亚型在这些不同的行为状态中是活跃的,有趣的是,抑制性可塑性已经被证明取决于抑制性和兴奋性神经元放电的精确协调以及神经网络的状态。这表明不同的行为状态可能会在特定的抑制性突触上触发不同形式的抑制可塑性。然而,关于抑制性可塑性在海马中的作用的证据非常有限,我们的假设是抑制性突触的可塑性:a)可以调节网络计算,B)是抑制性神经元亚型所特有的,c)以行为状态依赖的方式决定兴奋性神经元的输入选择性。我们提出了一个共同的努力,从一个实验小组,在海马突触可塑性的专业知识,与计算团队,最近提出了一个理论模型的抑制可塑性。通过紧密的相互作用,允许计算模型了解并指导实验和实验来完善模型,我们的目标是研究神经活动如何根据抑制性神经元亚型参与抑制可塑性,以及抑制可塑性如何塑造海马中的网络计算。这项工作将提供有关抑制可塑性机制和功能的重要信息,最终将提高我们对疾病状态下如何改变抑制作用的理解,从而可能导致新的疗法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling somatic and dendritic spike mediated plasticity at the single neuron and network level.
  • DOI:
    10.1038/s41467-017-00740-z
  • 发表时间:
    2017-09-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Bono J;Clopath C
  • 通讯作者:
    Clopath C
The functional role of sequentially neuromodulated synaptic plasticity in behavioural learning.
  • DOI:
    10.1371/journal.pcbi.1009017
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ang GWY;Tang CS;Hay YA;Zannone S;Paulsen O;Clopath C
  • 通讯作者:
    Clopath C
Free recall scaling laws and short-term memory effects in a latching attractor network.
锁定吸引子网络中的自由回忆缩放定律和短期记忆效应。
Assessment of Methods for the Intracellular Blockade of GABAA Receptors.
  • DOI:
    10.1371/journal.pone.0160900
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Atherton LA;Burnell ES;Mellor JR
  • 通讯作者:
    Mellor JR
Acetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors.
  • DOI:
    10.1111/ejn.13582
  • 发表时间:
    2017-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Betterton RT;Broad LM;Tsaneva-Atanasova K;Mellor JR
  • 通讯作者:
    Mellor JR
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Mellor其他文献

A spatiotemporal model of spine calcium dynamics in the hippocampus
  • DOI:
    10.1186/1471-2202-16-s1-p268
  • 发表时间:
    2015-12-04
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Thom Griffith;Jack Mellor;Krasi Tsaneva-Atanasova
  • 通讯作者:
    Krasi Tsaneva-Atanasova
A Ca2+-Based Computational Model for NMDA Receptor-Dependent Synaptic Plasticity at Individual Post-Synaptic Spines in the Hippocampus
海马个体突触后棘 NMDA 受体依赖性突触可塑性的基于 Ca2+ 的计算模型
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Owen J. L. Rackham;Krasimira Tsaneva;Ayalvadi Ganesh;Jack Mellor
  • 通讯作者:
    Jack Mellor

Jack Mellor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jack Mellor', 18)}}的其他基金

Impairment Of Neural Plasticity And Adaptive Representations By Genetic Risk Factors For Schizophrenia
精神分裂症遗传风险因素对神经可塑性和适应性表征的损害
  • 批准号:
    MR/X010910/1
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant
Regulation of plateau potentials by dendritically targeted inhibitory synaptic transmission.
通过树突靶向抑制性突触传递调节平台电位。
  • 批准号:
    BB/V001728/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant
Neural adaptation to sensory stimuli by regulation of dendritic spikes and synaptic plasticity.
通过调节树突尖峰和突触可塑性来适应感觉刺激。
  • 批准号:
    BB/R002177/1
  • 财政年份:
    2018
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant
Regulation of spine Ca2+ dynamics and spike timing-dependent synaptic plasticity by muscarinic acetylcholine receptors
毒蕈碱乙酰胆碱受体对脊柱 Ca2 动力学和尖峰时间依赖性突触可塑性的调节
  • 批准号:
    BB/K000454/1
  • 财政年份:
    2012
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Research Grant

相似国自然基金

Crocin 抑制 Hartley 豚鼠早期骨关节炎发生的 作用机制研究
  • 批准号:
    TGD24H060003
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
空气颗粒物通过调控白血病抑制因子参与影响IgA肾病进展的作用与机制研究
  • 批准号:
    82370711
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
利用人源性抗-MIF噬菌体抗体防治大肠癌肝转移的研究
  • 批准号:
    30470435
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

The contribution of plasticity to the recovery of retinal function following gene therapy
可塑性对基因治疗后视网膜功能恢复的贡献
  • 批准号:
    10591954
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Probing synaptic and circuit mechanisms of hippocampal plasticity with all-optical electrophysiology
用全光电生理学探讨海马可塑性的突触和回路机制
  • 批准号:
    10644885
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Age-dependent plasticity of central auditory synapses
中枢听觉突触的年龄依赖性可塑性
  • 批准号:
    10496286
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Cortical assembly formation through excitatory/inhibitory circuit plasticity
通过兴奋/抑制回路可塑性形成皮质组件
  • 批准号:
    10729689
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Inhibitory Synaptic Plasticity
抑制性突触可塑性
  • 批准号:
    RGPIN-2020-04793
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
    Discovery Grants Program - Individual
Local translation mechanisms to control inhibitory synaptic plasticity
控制抑制性突触可塑性的局部翻译机制
  • 批准号:
    10670420
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
Supplement to TR01 Human cortical development and neural plasticity altered by trisomy 21
TR01 补充品 21 三体改变的人类皮质发育和神经可塑性
  • 批准号:
    10670626
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
The role of Calbindin in developmental and transplant-reactivated cortical plasticity
钙结合蛋白在发育和移植再激活皮质可塑性中的作用
  • 批准号:
    10676102
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
Impact of hypertension and high-fat diet on mechanisms by which estradiol affects cortical synaptic plasticity.
高血压和高脂肪饮食对雌二醇影响皮质突触可塑性机制的影响。
  • 批准号:
    10334233
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
Role of neuronal ensembles in cortical plasticity during learning and development
神经元群在学习和发展过程中皮质可塑性中的作用
  • 批准号:
    10523350
  • 财政年份:
    2022
  • 资助金额:
    $ 72.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了