Regulation of polyphosphate metabolism in Chlamydomonas and potential for exploitation as P phosphorus sink in nutrient recovery systems
衣藻多磷酸盐代谢的调节及其在营养物回收系统中作为磷磷汇的开发潜力
基本信息
- 批准号:BB/N016033/1
- 负责人:
- 金额:$ 70.55万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Phosphorus is an essential element for life. It is a component of our genetic information (DNA and RNA). It plays critical roles in many aspects of our metabolism including the major energy currency of our cells ATP. It is a component of the membranes which surround our cells. It cannot be substituted for any other element. We obtain our phosphorus from our diet in the form of phosphate (phosphorus bonded to four oxygen atoms). Phosphorus enters the food chain through the acquisition of phosphate from the soil by plants. Plants, like all forms of life require this element and as any gardener knows it is one of the important macronutrients for plant growth- the P in your NPK fertiliser. Although it is quite an abundant element, most of the phosphorus in the environment is not in a form that plants can readily make use of (i.e., as soluble phosphate). Much of the phosphorus is locked in organic matter in the soil or bound to the surface of soil particles. This is why to get a good crop yield gardeners and farmers apply phosphate containing fertiliser. However there is a two-fold problem. To meet current needs rock phosphate is processed into phosphate fertiliser, but this non-renewable resource is being used and not replaced. At current rates of usage we will run out in between 50 and 200 years, so business as usual is not an option if we want to feed our children's children. The other problem is a more immediate one; much of the phosphorus we do use is wasted. Some of it enters water courses as agricultural run-off and can cause algal blooms in rivers and lakes. Much of it ends up at sewage works in domestic waste water from urine, faeces, organic waste and detergents. Because of strict environmental regulations on water quality, removing the unwanted phosphorus is necessary and expensive, contributing to high water bills. Use of chemicals to precipitate the phosphorus is a common method but limits reuse as a fertiliser. Biological methods are also used, and this is an active area of current research, but so far none have truly solved the problem of recovering phosphorus in an economic and re-usable way. This proposal is to investigate the fundamental mechanisms by which a species of alga called chlamydomonas, a microscopic unicellular photosynthetic organism, take up and store phosphate. Chlamydomonas is naturally occurring in the UK and grows well on waste water using either organic compounds in the waste, or light, to provide energy. It can accumulate phosphate to potentially high levels but the mechanisms by which it does so are not fully understood. To be able to use chlamydomonas or other naturally occurring algae to clear up waste water efficiently and recycle the reclaimed phosphate as fertiliser we need to understand what these mechanisms are and how and when they operate. The aims of our project are 1) to look at the effect of changing expression of genes that are thought to be involved in phosphate accumulation and storage to understand their role and importance in this process; 2) to test an hypothesis about the function of a gene of currently unknown function whose mutant phenotype implicates it in phosphate metabolism and 3) to find out which genes are important by looking for mutants which hyper accumulate phosphate. This fundamental knowledge will help engineers to design low-cost, low-carbon and environmentally friendly systems for phosphate recovery at sewage treatment works for sustainable reuse in agriculture.
磷是生命的基本元素。它是我们遗传信息(DNA和RNA)的组成部分。它在我们新陈代谢的许多方面起着关键作用,包括我们细胞ATP的主要能量货币。它是包围我们细胞的膜的组成部分。它不能被任何其他元素取代。我们从饮食中以磷酸盐的形式获得磷(磷与四个氧原子结合)。磷通过植物从土壤中获取磷酸盐进入食物链。植物,像所有形式的生命都需要这种元素,正如任何园丁都知道的那样,它是植物生长的重要常量营养素之一-NPK肥料中的P。虽然磷是一种相当丰富的元素,但环境中的大多数磷并不是植物可以容易利用的形式(即,作为可溶性磷酸盐)。大部分磷被锁在土壤中的有机物中或结合在土壤颗粒的表面。这就是为什么要获得良好的作物产量园丁和农民应用含磷肥料。然而,有一个双重问题。为了满足目前的需求,磷酸盐岩被加工成磷肥,但这种不可再生的资源正在使用,而不是取代。按照目前的使用速度,我们将在50到200年内用完,所以如果我们想养活我们的孩子的孩子,一切照旧不是一个选择。另一个问题是更直接的问题;我们使用的大部分磷都被浪费了。其中一些作为农业径流进入水道,可能导致河流和湖泊中的藻类大量繁殖。其中大部分最终在污水处理厂的家庭废水从尿,粪便,有机废物和洗涤剂。由于严格的水质环境法规,去除不需要的磷是必要的和昂贵的,导致高昂的水费。使用化学品沉淀磷是一种常见的方法,但限制了作为肥料的再利用。生物方法也被使用,这是目前研究的一个活跃领域,但迄今为止,没有一个真正解决了以经济和可重复使用的方式回收磷的问题。这项计划旨在研究一种叫做衣原体的微生物(一种微观单细胞光合生物)吸收和储存磷酸盐的基本机制。衣原体是自然发生在英国和生长良好的废水利用有机化合物的废物,或光,以提供能源。它可以将磷酸盐积累到潜在的高水平,但其机制尚不完全清楚。为了能够使用衣藻或其他天然存在的藻类有效地净化废水并回收回收的磷酸盐作为肥料,我们需要了解这些机制是什么以及它们如何以及何时运作。我们项目的目的是:1)观察被认为与磷酸盐积累和储存有关的基因表达变化的影响,以了解它们在这一过程中的作用和重要性; 2)检验关于目前功能未知的基因的功能的假设,该基因的突变表型暗示其参与磷酸盐代谢,以及3)通过寻找高积累磷酸盐的突变体来找出哪些基因是重要的。这些基础知识将帮助工程师设计低成本,低碳和环保的系统,用于污水处理厂的磷酸盐回收,以实现农业的可持续再利用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Simple and Non-destructive Method for Chlorophyll Quantification of Chlamydomonas Cultures Using Digital Image Analysis.
使用数字图像分析对衣藻培养物进行叶绿素定量的简单且无损的方法。
- DOI:10.3389/fbioe.2020.00746
- 发表时间:2020
- 期刊:
- 影响因子:5.7
- 作者:Wood NJ
- 通讯作者:Wood NJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Baker其他文献
Localization and targeting of isocitrate lyases in Saccharomyces cerevisiae.
酿酒酵母中异柠檬酸裂解酶的定位和靶向。
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:4.1
- 作者:
Kathryn M Taylor;Claude P. Kaplan;Xiaoping Gao;Alison Baker - 通讯作者:
Alison Baker
Castor Bean Isocitrate Lyase Lacking the Putative Peroxisomal Targeting Signal 1 ARM Is Imported into Plant Peroxisomes Both in Vitro and in Vivo
缺乏假定的过氧化物酶体靶向信号的蓖麻子异柠檬酸裂解酶 1 ARM 在体外和体内均被导入植物过氧化物酶体中
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:7.4
- 作者:
X. Gao;J. Marrison;Martin R. Pool;R. Leech;Alison Baker - 通讯作者:
Alison Baker
What to look for during constant observations: Expert consensus and a tool for observations recording.
在持续观察过程中要寻找什么:专家共识和观察记录工具。
- DOI:
10.1111/jpm.12555 - 发表时间:
2020 - 期刊:
- 影响因子:2.7
- 作者:
S. Chu;Katie Lambert;Alison Baker - 通讯作者:
Alison Baker
Exploring Underlying Dimensions of Social Connectedness in the Experiences of Suspended Young People from Ethnically Diverse Populations in the USA
探索美国不同种族人群中的悬浮年轻人经历中社会联系的潜在维度
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Henderson;Alison Baker;R. Goings;Berdine Gordon - 通讯作者:
Berdine Gordon
Resilience processes of brazilian young people: overcoming adversity through an arts program
巴西年轻人的韧性过程:通过艺术项目克服逆境
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
A. Pessoa;Renata Maria Coimbra;C. S. Murgo;A. Breda;Alison Baker - 通讯作者:
Alison Baker
Alison Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Baker', 18)}}的其他基金
India:Plant science for food security and nutrition
印度:植物科学促进粮食安全和营养
- 批准号:
BB/R021171/1 - 财政年份:2018
- 资助金额:
$ 70.55万 - 项目类别:
Research Grant
cleavage of acyl CoA by ABC subfamily D transporters in peroxisomes: mechanism and functional roles
过氧化物酶体中 ABC 亚家族 D 转运蛋白对酰基 CoA 的裂解:机制和功能作用
- 批准号:
BB/L001012/1 - 财政年份:2014
- 资助金额:
$ 70.55万 - 项目类别:
Research Grant
A chemical genetic approach to the analysis of peroxisome biogenesis
分析过氧化物酶体生物发生的化学遗传学方法
- 批准号:
BB/E013740/1 - 财政年份:2007
- 资助金额:
$ 70.55万 - 项目类别:
Research Grant
Purification and functional characterisation of COMATOSE a peroxisomal ABC transporter from Arabidopsis thaliana
拟南芥过氧化物酶体 ABC 转运蛋白 COMATOSE 的纯化和功能表征
- 批准号:
BB/F007299/1 - 财政年份:2007
- 资助金额:
$ 70.55万 - 项目类别:
Research Grant
相似国自然基金
Polyphosphate 调节sigma 80 与幽门螺杆菌致胃癌的关系研究
- 批准号:81000164
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Mitochondrial inorganic polyphosphate in the mammalian stress response.
哺乳动物应激反应中的线粒体无机多磷酸盐。
- 批准号:
10714359 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Regulation of polyphosphate metabolism in budding yeast
芽殖酵母多磷酸盐代谢的调节
- 批准号:
564140-2021 - 财政年份:2021
- 资助金额:
$ 70.55万 - 项目类别:
University Undergraduate Student Research Awards
Photoheterotrophy for economical production of bioplastics from municipal organic waste: Integration of polyphosphate metabolism and P-recovery chemistry to maximize PHA yields
利用城市有机废物经济地生产生物塑料的光异养技术:整合多磷酸盐代谢和磷回收化学,以最大限度地提高 PHA 产量
- 批准号:
521545-2018 - 财政年份:2020
- 资助金额:
$ 70.55万 - 项目类别:
Strategic Projects - Group
Photoheterotrophy for economical production of bioplastics from municipal organic waste: Integration of polyphosphate metabolism and P-recovery chemistry to maximize PHA yields
利用城市有机废物经济地生产生物塑料的光异养技术:整合多磷酸盐代谢和磷回收化学,以最大限度地提高 PHA 产量
- 批准号:
521545-2018 - 财政年份:2019
- 资助金额:
$ 70.55万 - 项目类别:
Strategic Projects - Group
Photoheterotrophy for economical production of bioplastics from municipal organic waste: Integration of polyphosphate metabolism and P-recovery chemistry to maximize PHA yields
利用城市有机废物经济地生产生物塑料的光异养技术:整合多磷酸盐代谢和磷回收化学,以最大限度地提高 PHA 产量
- 批准号:
521545-2018 - 财政年份:2018
- 资助金额:
$ 70.55万 - 项目类别:
Strategic Projects - Group
Inorganic polyphosphate as a chaperone in aging and in neurodegenerative diseases
无机多磷酸盐作为衰老和神经退行性疾病的伴侣
- 批准号:
10210342 - 财政年份:2018
- 资助金额:
$ 70.55万 - 项目类别: