Discovery and Exploitation of Novel Lytic Polysaccharide Monooxygenase Redox Partners.
新型裂解多糖单加氧酶氧化还原伙伴的发现和利用。
基本信息
- 批准号:BB/N019970/1
- 负责人:
- 金额:$ 130.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plants contain a vast amount of sugar. Sugar is important because it can be fermented by microorganisms into ethanol which can be used as a fuel - a commodity that we are running out of. The advantage of using fuels derived from plants is that this creates a carbon neutral cycle, where carbon dioxide released from fuel combustion is reabsorbed by photosynthesis during growth of new crops. Biofuels are already being produced, but they are largely derived from crops that could be better utilized as food sources. A significant challenge is, therefore, ensuring that we move towards a more sustainable solution by making use of the large amount of sugar that is found in the inedible parts of plants which currently goes to waste. These sugars are locked away in structures known as polysaccharides, which effectively act as the plants skeleton giving them rigidity. The most abundant polysaccharide is called cellulose, which is already utilized extensively in the paper and cotton industries, and is the main component of wood. The sugars in cellulose are all joined together in a highly ordered structure that is incredibly difficult to break down. The challenge then is to find an efficient means of deconstructing cellulose to release the sugars so that they can be used to generate bioethanol. Fungi and bacteria have evolved over millions of years to live in all sorts of environments. Some of these organisms are able to degrade and live off wood. In order to do this, they produce protein-based molecular machines known as enzymes. As a structural biologist I am able to study these enzymes and gain a fuller understanding of how they break down cellulose. Recently a new family of enzymes has been identified in this process known as LPMOs (lytic polysaccharide monooxygenases). LPMOs show great promise in enhancing the efficiency of biofuels production but our knowledge of how they function is limited.LPMOs require two things - oxygen and electrons. Oxygen is readily available from the air but electrons need to be supplied from some other source. In bacteria, this source of electrons has not yet been identified. The aim of this fellowship is to characterize a range of enzymes that are potential electron sources for LPMOs. By determining their three-dimensional structures and biochemical properties I aim to build up a thorough understanding of the interplay between these various enzymes at the molecular level. Modern enzyme engineering approaches will then be applied to make more efficient and novel enzymes for deployment in industry for biofuels production. Electron transport, and the so-called redox reactions which these processes support, are also of importance to other industries beyond the biofuels sector and so this fellowship also offers ample opportunities to explore the application of these proteins to solve other scientific problems. Having worked extensively on LPMOs this fellowship offers me the perfect opportunity to branch out into my own research area answering a fundamental question in the field and expanding my knowledge of new scientific approaches to tackle real world problems.
植物含有大量的糖。糖很重要,因为它可以被微生物发酵成乙醇,可用作燃料--一种我们即将耗尽的商品。使用从植物中提取的燃料的好处是,这创造了一个碳中性循环,在新作物生长过程中,燃料燃烧释放的二氧化碳被光合作用重新吸收。生物燃料已经在生产,但它们主要来自可以更好地作为食物来源的作物。因此,一个重大的挑战是,确保我们通过利用植物中不能食用的部分中发现的大量糖来实现更可持续的解决方案,这些糖目前已经被浪费。这些糖被锁在被称为多糖的结构中,多糖有效地充当植物的骨架,使它们变得坚硬。最丰富的多糖是纤维素,它已经在造纸和棉花工业中得到了广泛的利用,是木材的主要成分。纤维素中的糖都以高度有序的结构连接在一起,这种结构非常难以分解。因此,挑战是找到一种有效的方法来解构纤维素以释放糖,以便它们可以用于生产生物乙醇。真菌和细菌经过数百万年的进化,生活在各种环境中。其中一些生物能够降解并以木材为生。为了做到这一点,他们制造了基于蛋白质的分子机器,称为酶。作为一名结构生物学家,我能够研究这些酶,并对它们如何分解纤维素有更全面的了解。最近,在这一过程中发现了一个新的酶家族,称为LPMOS(裂解多糖单加氧酶)。LPMO在提高生物燃料生产效率方面显示出巨大的希望,但我们对它们如何发挥作用的了解有限。LPMO需要两种东西--氧气和电子。氧气很容易从空气中获得,但电子需要从其他来源获得。在细菌中,这种电子的来源还没有被确定。这项研究的目的是确定一系列酶的特征,这些酶是LPMO的潜在电子源。通过确定它们的三维结构和生化性质,我的目标是在分子水平上彻底了解这些不同的酶之间的相互作用。然后,将应用现代酶工程方法来制造更高效和更新颖的酶,以便在工业上用于生物燃料生产。电子传输,以及这些过程所支持的所谓的氧化还原反应,对生物燃料领域以外的其他行业也很重要,因此,这项研究也提供了大量的机会来探索这些蛋白质的应用,以解决其他科学问题。在LPMO方面做了大量工作后,这一奖学金为我提供了一个完美的机会,可以扩展到我自己的研究领域,回答该领域的一个基本问题,并扩大我对解决现实世界问题的新科学方法的知识。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An ancient family of lytic polysaccharide monooxygenases with roles in arthropod development and biomass digestion.
- DOI:10.1038/s41467-018-03142-x
- 发表时间:2018-02-22
- 期刊:
- 影响因子:16.6
- 作者:Sabbadin F;Hemsworth GR;Ciano L;Henrissat B;Dupree P;Tryfona T;Marques RDS;Sweeney ST;Besser K;Elias L;Pesante G;Li Y;Dowle AA;Bates R;Gomez LD;Simister R;Davies GJ;Walton PH;Bruce NC;McQueen-Mason SJ
- 通讯作者:McQueen-Mason SJ
C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
- DOI:10.1042/bcj20210376
- 发表时间:2021-07-30
- 期刊:
- 影响因子:0
- 作者:Branch J;Rajagopal BS;Paradisi A;Yates N;Lindley PJ;Smith J;Hollingsworth K;Turnbull WB;Henrissat B;Parkin A;Berry A;Hemsworth GR
- 通讯作者:Hemsworth GR
Revisiting the role of electron donors in lytic polysaccharide monooxygenase biochemistry.
- DOI:10.1042/ebc20220164
- 发表时间:2023-04-18
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Enzymes of Energy Technology
能源技术酶
- DOI:10.1016/bs.mie.2018.10.014
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hemsworth G
- 通讯作者:Hemsworth G
Structural dissection of two redox proteins from the shipworm symbiont Teredinibacter turnerae
- DOI:10.1107/s2052252524001386
- 发表时间:2024-03-01
- 期刊:
- 影响因子:3.9
- 作者:Rajagopal,Badri S.;Yates,Nick;Hemsworth,Glyn R.
- 通讯作者:Hemsworth,Glyn R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Glyn Hemsworth其他文献
Glyn Hemsworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Commercial exploitation of novel biofertilisers for increased soil health
新型生物肥料的商业开发以改善土壤健康
- 批准号:
10054609 - 财政年份:2023
- 资助金额:
$ 130.48万 - 项目类别:
Grant for R&D
RUI: Studying B-bodies, a novel type of nuclear domains: from organization to practical exploitation.
RUI:研究 B 体,一种新型核域:从组织到实际利用。
- 批准号:
2042814 - 财政年份:2021
- 资助金额:
$ 130.48万 - 项目类别:
Standard Grant
Unraveling and exploitation of novel metabolic system regulated by a metabolite sensor
代谢物传感器调节的新型代谢系统的揭示和开发
- 批准号:
20K08855 - 财政年份:2020
- 资助金额:
$ 130.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A commercial plan for the exploitation of a series of novel anti-AOX compounds and associated technology applications
开发一系列新型抗AOX化合物及相关技术应用的商业计划
- 批准号:
BB/T003200/1 - 财政年份:2019
- 资助金额:
$ 130.48万 - 项目类别:
Research Grant
Development and Exploitation of a Novel Multi-Purpose Particle Detector for Radiation Monitoring in Space Exploration
用于空间探索辐射监测的新型多用途粒子探测器的开发和利用
- 批准号:
414049180 - 财政年份:2018
- 资助金额:
$ 130.48万 - 项目类别:
Research Grants
MICA: The exploitation of a novel image-based risk stratification tool in early prostate cancer - the Re-IMAGINE Consortium
MICA:在早期前列腺癌中开发基于图像的新型风险分层工具 - Re-IMAGINE 联盟
- 批准号:
MR/R014043/1 - 财政年份:2018
- 资助金额:
$ 130.48万 - 项目类别:
Research Grant
Exploitation of transporters to develop novel antimicrobials against Gram-negative bacteria
利用转运蛋白开发针对革兰氏阴性菌的新型抗菌药物
- 批准号:
102856 - 财政年份:2017
- 资助金额:
$ 130.48万 - 项目类别:
Collaborative R&D
Exploitation of a novel fungicide for preventing fungal contamination and deterioration of products and materials
开发一种新型杀菌剂来防止真菌污染和产品和材料变质
- 批准号:
BB/P02369X/1 - 财政年份:2017
- 资助金额:
$ 130.48万 - 项目类别:
Research Grant
Characterisation and exploitation of novel antimicrobials within the rumen microbiota
瘤胃微生物群中新型抗菌剂的表征和开发
- 批准号:
BB/L026716/2 - 财政年份:2017
- 资助金额:
$ 130.48万 - 项目类别:
Research Grant
Creating electricity by reducing cost, payback time and Carbon foot print - An exploitation of a novel method into manufacturing Cyrstalline Silicon Photovoltaic solar Cells
通过降低成本、投资回收期和碳足迹来发电 - 开发一种制造晶体硅光伏太阳能电池的新方法
- 批准号:
132390 - 财政年份:2016
- 资助金额:
$ 130.48万 - 项目类别:
Feasibility Studies