Halophilic enzymes in tandem flow reactions
串联流反应中的嗜盐酶
基本信息
- 批准号:BB/P002536/1
- 负责人:
- 金额:$ 51.44万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Chemical reactions are often multi step processes in which a starting material is converted into a first intermediate, then another and so on till the final molecule is synthesized. Traditionally these reactions are done sequentially, in separate flasks and each step requires a work-up and often purification. When the syntheses are scaled up for an industrial setting, each step must be optimized and costs become a critical factor. Where possible, reactions are catalyzed to minimize reaction times, and purification is avoided if impurities generated in a particular reaction can be carried forward without causing issues in the next step. In an effort to streamline production and maximize throughput, the development of flow-chemistry, where a reaction is carried out in a continuous flow through a reactor rather than in a batch, is rapidly expanding. In this set up a catalyst can be immobilized on a solid matrix and the reagents are passed through in a controlled flow allowing for the product to be synthesized continuously.In recent years the use of enzymes to replace chemical catalysts has also evolved significantly, with major pharmaceuticals now looking at biotechnology for the production of drugs with a more environmentally friendly approach. Moreover, biocatalytic processes reduce the contamination of products with toxic impurities such as (transition) metals, a major cost and time factor in other catalytic processes. The application of biocatalysis to flow chemistry is therefore an excellent target biotechnology also. Furthermore, multiple enzymes can be immobilized in sequence into contiguous bioreactors for cascade reactions to be developed, effectively assembling an artificial biosynthetic sequence where an enzyme recognizes as substrate the product generated by the previous enzyme and so on. This can be achieved either in a cell free system, or the artificial pathway can be constructed inside a biological host which becomes itself a bioreactor. In this project we are looking at developing a cascade reaction system utilizing enzymes from an organism isolated from the Dead Sea. Haloferax volcanii grows in very high salt environments and its enzymes can catalyze reactions not only in the presence of high salts, but more interestingly they can do this in the presence of organic solvents. Enzymes are normally unstable in non-aqueous media and this makes them often incompatible with chemical reactions where many molecules are insoluble in water. Haloferax enzymes are therefore ideal biocatalysts for chemical synthesis. We have previously investigated the characteristics of an alcohol dehydrogenase from Haloferax (HvADH1) and this enzyme is capable of transforming a very broad range of alcohols into aldehydes or ketones. We also know that we can easily immobilize HvADH1 irreversibly on commercially available beads further increasing its stability and activity. We now want to combine HvADH1 with a second enzyme, also from Haloferax, to transform the aldehydes and ketones produced in the first step to amines, achieving overall a functional group inter-conversion starting from alcohols to generate amines. Amines are very common intermediates in the synthesis of pharmaceuticals and agrochemicals and we will generate them from readily available alcohols. We will test two different systems, one in which the enzymes are individually produced, isolated, immobilized, and the flow optimized for substrate conversion, and a second system in which the enzymes will be over-produced simultaneously inside Haloferax cells which will be itself immobilized and used as a self contained reactor where both steps will take place.
化学反应通常是多步骤的过程,其中起始材料转化为第一中间体,然后是另一个中间体,依此类推,直到合成最终分子。传统上,这些反应在单独的烧瓶中顺序进行,每个步骤都需要后处理,通常需要纯化。当合成在工业环境中按比例放大时,每个步骤都必须优化,成本成为关键因素。在可能的情况下,催化反应以最小化反应时间,并且如果特定反应中产生的杂质可以继续进行而不会在下一步中引起问题,则避免纯化。为了简化生产和最大化生产量,流动化学的发展正在迅速扩大,其中反应在连续流动中通过反应器而不是分批进行。在这种装置中,催化剂可以固定在固体基质上,试剂以受控的流量通过,从而使产品能够连续合成。近年来,使用酶来取代化学催化剂也有了显着的发展,主要制药公司现在正在寻找生物技术,以更环保的方式生产药物。此外,生物催化工艺减少了产品被有毒杂质如(过渡)金属污染,这是其他催化工艺中的主要成本和时间因素。因此,生物催化在流动化学中的应用也是一个很好的目标生物技术。此外,多个酶可以按顺序固定到连续的生物反应器中,以进行级联反应,有效地组装人工生物合成序列,其中酶识别由前一个酶产生的产物作为底物,等等。这可以在无细胞系统中实现,或者人工途径可以在生物宿主内构建,该生物宿主本身成为生物反应器。在这个项目中,我们正在开发一个级联反应系统,利用从死海分离的生物体的酶。Haloferax volcanii生长在非常高的盐环境中,其酶不仅可以在高盐存在下催化反应,而且更有趣的是,它们可以在有机溶剂存在下催化反应。酶通常在非水介质中不稳定,这使得它们通常与许多分子不溶于水的化学反应不相容。因此,Haloferax酶是化学合成的理想生物催化剂。我们以前已经研究了来自Haloferax的醇脱氢酶(HvADH 1)的特性,该酶能够将非常广泛的醇转化为醛或酮。我们还知道,我们可以很容易地将HvADH 1不可逆地固定在市售的珠子上,进一步提高其稳定性和活性。我们现在想要将联合收割机HvADH 1与同样来自Haloferax的第二种酶结合,以将第一步中产生的醛和酮转化为胺,从而实现从醇开始的总体官能团相互转化以生成胺。胺是药物和农用化学品合成中非常常见的中间体,我们将从容易获得的醇中生产它们。我们将测试两个不同的系统,其中一个系统中的酶单独产生,分离,固定化,并优化底物转化的流量,和第二个系统中的酶将在Haloferax细胞内同时过量生产,该细胞本身将被固定化,并用作一个独立的反应器,其中两个步骤都将发生。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-sustaining closed-loop multienzyme-mediated conversion of amines into alcohols in continuous reactions
- DOI:10.1038/s41929-018-0082-9
- 发表时间:2018-06-01
- 期刊:
- 影响因子:37.8
- 作者:Contente, Martina L.;Paradisi, Francesca
- 通讯作者:Paradisi, Francesca
Transaminase-catalyzed continous synthesis of biogenic aldehydes
转氨酶催化生物醛的连续合成
- DOI:10.7892/boris.132726
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Contente Martina Letizia C
- 通讯作者:Contente Martina Letizia C
Highly Efficient Oxidation of Amines to Aldehydes with Flow-based Biocatalysis
- DOI:10.1002/cctc.201701147
- 发表时间:2017-10-23
- 期刊:
- 影响因子:4.5
- 作者:Contente, Martina L.;Dall'Oglio, Federica;Paradisi, Francesca
- 通讯作者:Paradisi, Francesca
Strategic single point mutation yields a solvent- and salt-stable transaminase from Virgibacillus sp. in soluble form.
- DOI:10.1038/s41598-018-34434-3
- 发表时间:2018-11-06
- 期刊:
- 影响因子:4.6
- 作者:Guidi B;Planchestainer M;Contente ML;Laurenzi T;Eberini I;Gourlay LJ;Romano D;Paradisi F;Molinari F
- 通讯作者:Molinari F
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesca Paradisi其他文献
Biocatalyst Immobilization and Process Intensification: Production of (S)-Piperazine-2-carboxylic Acid Dihydrochloride
生物催化剂固定化和工艺强化:(S)-哌嗪-2-甲酸二盐酸盐的生产
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
David Roura Padrosa;D. Wetzl;Stefan Hildbrand;Paolo Tosatti;Joerg Sedelmeier;K. Puentener;H. Iding;Francesca Paradisi - 通讯作者:
Francesca Paradisi
Rapid production of the anaesthetic mepivacaine through continuous, portable technology
通过连续便携式技术快速生产麻醉剂甲哌卡因
- DOI:
10.1039/d3gc04375d - 发表时间:
2024-02-19 - 期刊:
- 影响因子:9.200
- 作者:
Pablo Díaz-Kruik;Francesca Paradisi - 通讯作者:
Francesca Paradisi
Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses
多步酶级联反应作为实现绿色可持续药物合成的途径
- DOI:
10.1038/s41557-022-00931-2 - 发表时间:
2022-05-05 - 期刊:
- 影响因子:20.200
- 作者:
Ana I. Benítez-Mateos;David Roura Padrosa;Francesca Paradisi - 通讯作者:
Francesca Paradisi
Stepping up: From lab scale to industrial processes
- DOI:
10.1016/j.cep.2024.110094 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Francesca Paradisi - 通讯作者:
Francesca Paradisi
A simple and efficient method for the synthesis of Erlenmeyer azlactones
- DOI:
10.1016/j.tet.2009.02.011 - 发表时间:
2009-04-11 - 期刊:
- 影响因子:
- 作者:
Philip A. Conway;Kevin Devine;Francesca Paradisi - 通讯作者:
Francesca Paradisi
Francesca Paradisi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesca Paradisi', 18)}}的其他基金
17-ERACoBioTech: Fabrication of hierarchically organized multi-functional heterogeneous biocatalysts
17-ERACoBioTech:分层组织的多功能异质生物催化剂的制造
- 批准号:
BB/R021287/1 - 财政年份:2018
- 资助金额:
$ 51.44万 - 项目类别:
Research Grant
相似海外基金
In vivo calcium imaging during appetitive learning in HIV Tat transgenic mice exposed to cannabis
暴露于大麻的 HIV Tat 转基因小鼠食欲学习过程中的体内钙成像
- 批准号:
10696442 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
DeADP-ribosylation of host targets mediated by a bacterial effector
由细菌效应子介导的宿主靶标的 DeADP-核糖基化
- 批准号:
10667971 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Application of a high throughput platform for screening directed evolution libraries
高通量平台筛选定向进化文库的应用
- 批准号:
10818241 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Combining Separation, Digestion, and Ionization on a Mass Spectrometry Cartridge to Enable Biomedical Research on Proteoforms
在质谱柱上结合分离、消化和电离,以实现蛋白质形式的生物医学研究
- 批准号:
10637225 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
The role of vascular lipids in Alzheimer's disease pathophysiology
血管脂质在阿尔茨海默病病理生理学中的作用
- 批准号:
10751494 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Decoding the signature of sperm RNA & RNA modification of environmental stressors on the intergenerational transmission of metabolic phenotypes
解码精子 RNA 的特征
- 批准号:
10869714 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Chemical Biology-Based Tools to Uncover the Function of PARP16 in cancer
基于化学生物学的工具揭示 PARP16 在癌症中的功能
- 批准号:
10750279 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Development of a high throughput platform for screening directed evolution libraries
开发用于筛选定向进化文库的高通量平台
- 批准号:
10574429 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
The Role of the O-GlcNAc Modification in X-linked Intellectual Disability
O-GlcNAc 修饰在 X 连锁智力障碍中的作用
- 批准号:
10607367 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别:
Elucidating the Biosynthesis of a Model Ladder-Frame Polyether Toxin
阐明梯架聚醚毒素模型的生物合成
- 批准号:
10810195 - 财政年份:2023
- 资助金额:
$ 51.44万 - 项目类别: