16AGRITECHCAT5: GrassVision: Automated application of herbicides to broad-leaf weeds in grass crops
16AGRITECHCAT5:GrassVision:对禾本科作物阔叶杂草自动施用除草剂
基本信息
- 批准号:BB/P005039/1
- 负责人:
- 金额:$ 13.64万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to develop a novel spray apparatus for precision application of herbicides to broad-leaf weeds ingrass crops. Such a system, using a spray boom covering a 10x.5m area of ground, could feasibly run at upwards of 1m/s,allowing precision spraying of weeds at between 1 and 2 hectares/hr.The consortium is comprised of three partners; (1) Centre for Machine Vision (CMV), a leading research centre in 3Dmachine vision, with past success in the agri-tech field, (2) Aralia Systems Ltd (AS), an international security company witha wide R&D portfolio in data-mining and complex feature analysis on videos, (3) Soil Essentials Ltd (SE), a leadingprecision agriculture company specialising in GPS machinery guidance, implement control, cloud based decision supportsystems and emerging grassland agronomy technologies.The primary focus will be to detect weeds in grass such as dock and ragwort using novel 3D machine vision techniques. Initially theproject will use off-the-shelf machinery to spray an area of roughly 50x50cm around each weed, activating the relevantnozzles on the boom with an estimated aimed decrease in herbicide use of around 75%.The project will then look todetermine the limits of precision by refining the boom itself, allowing nozzles to move linearly across the boom as on aninkjet printer, or in rotation using servo motors. Using this approach, we aim to provide potential reductions in herbicide usein excess of 90%.The role of the CMV team will be to realise novel 3D imaging hardware and software for detecting the weeds in the grasswhile moving on a tractor. We also aim to recognise the weed species. This data will be used to both direct the automatedweeding system in real-time (developed by SE) and to create a detailed weed data map (developed by AS) of the entirefield.
本项目的目的是研制一种新型的除草剂精确喷洒装置,用于对禾本科作物中的阔叶杂草进行精确喷洒。这种系统使用覆盖10x.5米地面面积的喷洒杆,可以以1米/秒以上的速度运行,允许以1至2公顷/小时的速度精确喷洒杂草。(1)机器视觉中心(CMV),3D机器视觉领域的领先研究中心,过去在农业技术领域取得了成功,(2)Aralia Systems Ltd(AS),一家国际安全公司,在数据挖掘和视频复杂特征分析方面拥有广泛的研发组合,(3)Soil Essentials Ltd(SE),一家领先的精准农业公司,专门从事GPS机械导航,机具控制,基于云的决策支持系统和新兴的草地农学技术。主要重点将是使用新型3D机器视觉检测草中的杂草,如船坞和豚草技术.最初,该项目将使用现成的机械设备在每棵杂草周围喷洒大约50 x50厘米的区域,激活围栏上的相关喷嘴,估计目标是减少除草剂使用量约75%。然后,该项目将通过改进围栏本身来确定精度的极限,允许喷嘴像喷墨打印机一样在围栏上线性移动,或者使用伺服电机旋转。使用这种方法,我们的目标是提供超过90%的除草剂使用量的潜在减少。CMV团队的作用将是实现新型的3D成像硬件和软件,用于在拖拉机上移动时检测草中的杂草。我们也要识别杂草的种类。这些数据将用于实时指导自动除草系统(由SE开发),并创建整个田地的详细杂草数据地图(由AS开发)。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Defining Strawberry Uniformity using 3D Imaging and Genetic Mapping
- DOI:10.1101/2020.03.01.972190
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Bo Li;H. Cockerton;Abigail W. Johnson;A. Karlström;E. Stavridou;G. Deakin;R. Harrison
- 通讯作者:Bo Li;H. Cockerton;Abigail W. Johnson;A. Karlström;E. Stavridou;G. Deakin;R. Harrison
Weed classification in grasslands using convolutional neural networks
使用卷积神经网络对草原杂草进行分类
- DOI:10.1117/12.2530092
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Smith L
- 通讯作者:Smith L
Photometric Stereo Technique Suitability Study for Plant Phenotyping
光度立体技术对植物表型分析的适用性研究
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Bernotas G
- 通讯作者:Bernotas G
The Genetic Architecture of Strawberry Yield and Fruit Quality Traits
- DOI:10.1101/2021.06.13.448230
- 发表时间:2021-06
- 期刊:
- 影响因子:0
- 作者:H. Cockerton;A. Karlström;Abigail W. Johnson;Bo Li-;E. Stavridou;Katie J. Hopson;A. Whitehouse;R. Harrison
- 通讯作者:H. Cockerton;A. Karlström;Abigail W. Johnson;Bo Li-;E. Stavridou;Katie J. Hopson;A. Whitehouse;R. Harrison
PATHWAY ANALYSIS TO DETERMINE FACTORS CONTRIBUTING TO OVERALL QUALITY SCORES IN FOUR BERRY CROPS
- DOI:10.2478/johr-2020-0025
- 发表时间:2020-12-01
- 期刊:
- 影响因子:0
- 作者:Cockerton, Helen;Unzueta, Maddi Blanco;Fernandez, Felicidad Fernandez
- 通讯作者:Fernandez, Felicidad Fernandez
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melvyn Smith其他文献
Barriers limiting dentists' active involvement in smoking cessation.
限制牙医积极参与戒烟的障碍。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:1.6
- 作者:
R. Watt;P. Mcglone;J. Dykes;Melvyn Smith - 通讯作者:
Melvyn Smith
Viral lower respiratory tract infections and preterm infants’ healthcare utilisation
病毒性下呼吸道感染与早产儿的医疗保健利用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.6
- 作者:
S. Drysdale;Mireia Alcazar;T. Wilson;Melvyn Smith;M. Zuckerman;J. Peacock;S. Johnston;A. Greenough - 通讯作者:
A. Greenough
Diagnosis of genital herpes by real time PCR in routine clinical practice
常规临床实践中实时 PCR 诊断生殖器疱疹
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:3.6
- 作者:
M. Ramaswamy;C. Mcdonald;Melvyn Smith;Daniel Thomas;S. Maxwell;M. Tenant‐Flowers;A. Geretti - 通讯作者:
A. Geretti
THORAXJNL148023-149898 468..473
胸部JNL148023-149898 468..473
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Drysdale;T. Wilson;M. Alcázar;S. Broughton;M. Zuckerman;Melvyn Smith;G. Rafferty;S. Johnston;A. Greenough - 通讯作者:
A. Greenough
Development of a real-time probe-based PCR assay for the diagnosis of Pneumocystis pneumonia.
开发基于实时探针的 PCR 检测方法,用于诊断肺孢子虫肺炎。
- DOI:
10.1080/13693780412331282340 - 发表时间:
2005 - 期刊:
- 影响因子:2.9
- 作者:
M. Strutt;Melvyn Smith - 通讯作者:
Melvyn Smith
Melvyn Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melvyn Smith', 18)}}的其他基金
Pig ID: developing a deep learning machine vision system to track pigs using individual biometrics
Pig ID:开发深度学习机器视觉系统,利用个体生物识别技术跟踪猪
- 批准号:
BB/X001385/1 - 财政年份:2023
- 资助金额:
$ 13.64万 - 项目类别:
Research Grant
FARM interventions to Control Antimicrobial ResistancE
控制抗生素耐药性的农场干预措施
- 批准号:
MR/W031264/1 - 财政年份:2022
- 资助金额:
$ 13.64万 - 项目类别:
Research Grant
Investigating automatic detection of emotion in biometrically identified pig faces using machine learning
使用机器学习研究生物识别猪脸中的情绪自动检测
- 批准号:
BB/S002138/1 - 财政年份:2018
- 资助金额:
$ 13.64万 - 项目类别:
Research Grant
13TSB_AgriFood: Precision Cow Health Management
13TSB_AgriFood:精准奶牛健康管理
- 批准号:
BB/L017407/1 - 财政年份:2013
- 资助金额:
$ 13.64万 - 项目类别:
Research Grant
Face Recognition using Photometric Stereo
使用光度立体进行人脸识别
- 批准号:
EP/E028659/1 - 财政年份:2007
- 资助金额:
$ 13.64万 - 项目类别:
Research Grant
相似海外基金
GrassVision - Automated application of herbicides to broad-leaf weeds in grass crops
GrassVision - 自动对禾本科作物中的阔叶杂草施用除草剂
- 批准号:
132339 - 财政年份:2016
- 资助金额:
$ 13.64万 - 项目类别:
BEIS-Funded Programmes