Bird Flight Energetics - from tissues to free-flight
鸟类飞行能量学 - 从组织到自由飞行
基本信息
- 批准号:BB/P020933/1
- 负责人:
- 金额:$ 60.83万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Birds are amongst the most diverse, successful and ecologically important groups on earth and flight is key to their success. However, flight is one of the most energetically expensive modes of locomotion and there are few aspects of a bird's ecology, behaviour and physiology that are not affected by its energetic demands. In all modes of locomotion, energetics and locomotor performance are linked via an energy transduction cascade in which muscles convert chemical energy (derived from food) into mechanical work that is transferred to the environment to produce movement. Free-flight energy expenditure is difficult to measure directly, but proxies (components of the energy transduction chain such as heart rate and body acceleration) have been shown to be generally related to metabolic rate. However, underlying assumptions and simplifications inherent in these indirect approaches have not been rigorously assessed and validated for animals during flight. Ideally, the transfer of energy between all levels of organization should be determined: a full understanding of the system is required to improve the predictive power of using proxies as indicators of metabolic rate. This is achievable in bird flight by combining research expertise in muscle physiology and flight energetics at Leeds with expertise in studying free-flight using physiological and biomechanical sensors and modelling flight energetics at Bangor.The overall aim of this project is to use a multidisciplinary approach to determine the relationship between the mechanical performance and energy utilisation of birds during flight across a range of speeds, its partitioning at the level of individual muscles and non-muscular systems, and the functional linkage to the indirect measures of heart rate and dynamic body acceleration. To achieve this goal, we will track the transduction of energy by quantifying the following. First, we will determine the whole organism metabolic rate of species with a U-shaped power curve, by measuring the rates of oxygen consumption and carbon dioxide production during flight in a wind tunnel, while simultaneously recording heart rate, dynamic body acceleration and kinematics. This has not yet been undertaken for any flying animal. Second we will use regional blood flow as a measure of tissue-level energy expenditure, enabling us to separate out the factors contributing to overall flight energy expenditure by quantifying the energy used by all of the muscles and by other, non-muscular physiological systems (e.g. respiratory, circulatory and homeostatic) in relation to flight speed. Third, the mechanical performance of the major flight muscles will be determined by measuring their length change and activity patterns during flight and simulating these conditions in vitro to measure force and power generation. By recording the 3D kinematics of the wings and body we will be able to characterize the instantaneous accelerations and, by extension, the instantaneous aerodynamic forces. By integrating energetics and mechanical measurements we will obtain the most comprehensive understanding of the energy transduction chain for any flying animal. Ultimately, we will establish the detailed relationship between whole organismal and tissue-level metabolic energy expenditure with that of proxies of energy turnover that can be measured in the field and that lie at opposite ends of the energy transduction chain: heart rate and 3-axis accelerometry and 3-axis gyroscope. These integrated measurements will allow us to refine and improve the predictive power of using such proxies as indicators of metabolic rate. The wind tunnel based studies will provide a firm footing understanding animal flight behaviour in the field. These results may also inform decisions in conservation, land use planning and public health issues; to mitigate the combined effects of habitat fragmentation and climate change, or when birds are implicated in the spread of disease.
鸟类是地球上最多样化、最成功和最重要的生态物种之一,飞行是它们成功的关键。然而,飞行是最昂贵的运动方式之一,鸟类的生态、行为和生理方面几乎没有不受其能量需求影响的方面。在所有的运动模式中,能量学和运动性能通过能量传递级联联系在一起,在能量传递级联中,肌肉将化学能(来自食物)转化为机械功,机械功被转移到环境中产生运动。自由飞行的能量消耗很难直接测量,但代谢物(能量转导链的组成部分,如心率和身体加速度)已被证明通常与代谢率有关。然而,这些间接方法所固有的基本假设和简化并没有在飞行过程中对动物进行严格的评估和验证。理想情况下,应该确定各级组织之间的能量转移:需要对系统有充分的了解,以提高使用代谢物作为代谢率指标的预测能力。在鸟类飞行中,这是通过结合利兹的肌肉生理学和飞行能量学的研究专长,以及在班戈使用生理和生物力学传感器研究自由飞行的专业知识和建立飞行能量学模型的专业知识来实现的。该项目的总体目标是使用多学科方法来确定鸟类在不同速度范围内飞行时机械性能和能量利用之间的关系,它在个体肌肉和非肌肉系统水平上的划分,以及与心率和动态身体加速的间接测量的功能联系。为了实现这一目标,我们将通过量化以下内容来跟踪能量的传递。首先,我们将通过在风洞中测量飞行过程中的耗氧率和二氧化碳产生率,同时记录心率、动态身体加速度和运动学,来确定具有U型功率曲线的物种的整体代谢率。目前还没有对任何会飞的动物进行这项研究。其次,我们将使用局部血流作为组织水平能量消耗的衡量标准,通过量化所有肌肉和其他非肌肉生理系统(例如呼吸、循环和稳态)相对于飞行速度的能量消耗,使我们能够分离出导致总体飞行能量消耗的因素。第三,主要飞行肌肉的机械性能将通过测量它们在飞行过程中的长度变化和活动模式,并在体外模拟这些条件来测量力和发电量来确定。通过记录机翼和机身的3D运动学,我们将能够表征瞬时加速度,进而表征瞬时气动力。通过将能量学和力学测量相结合,我们将对任何飞行动物的能量转换链获得最全面的了解。最终,我们将建立整个生物体和组织水平的代谢能量消耗与能量周转的替代指标之间的详细关系,这些替代指标可以在现场测量,并且位于能量转换链的两端:心率、三轴加速度计和三轴陀螺仪。这些综合测量将使我们能够改进和提高使用这些代谢率指标作为代谢率指标的预测能力。基于风洞的研究将为理解动物在野外的飞行行为提供坚实的基础。这些结果还可能为保护、土地利用规划和公共卫生问题提供决策依据;减轻栖息地碎片化和气候变化的综合影响,或者在鸟类牵涉到疾病传播的时候。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Flying fast improves aerodynamic economy of heavier birds
- DOI:10.1038/s41598-024-56325-6
- 发表时间:2024-03-27
- 期刊:
- 影响因子:4.6
- 作者:Bishop,Charles M.;Halsey,Lewis G.;Askew,Graham N.
- 通讯作者:Askew,Graham N.
Adaptations for extremely high muscular power output: why do muscles that operate at intermediate cycle frequencies generate the highest powers?
- DOI:10.1007/s10974-022-09640-2
- 发表时间:2023-06
- 期刊:
- 影响因子:2.7
- 作者:
- 通讯作者:
How birds dissipate heat before, during and after flight.
- DOI:10.1098/rsif.2023.0442
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Neil Askew其他文献
Graham Neil Askew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Neil Askew', 18)}}的其他基金
Computational biomechanical modelling to predict musculoskeletal dynamics: application for 3Rs and changing muscle-bone dynamics
预测肌肉骨骼动力学的计算生物力学模型:3R 的应用和改变肌肉骨骼动力学
- 批准号:
BB/Y002466/1 - 财政年份:2024
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
A new framework for computational biomechanical models and 3Rs in musculoskeletal research.
肌肉骨骼研究中计算生物力学模型和 3R 的新框架。
- 批准号:
BB/R016917/1 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
An integrated approach towards characterising the functional mechanics and energetics of insect flight muscles
表征昆虫飞行肌肉功能力学和能量学的综合方法
- 批准号:
BB/R00109X/1 - 财政年份:2018
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
Tracking energy expenditure in insect flight: from the contractile proteins to the animal's wake
跟踪昆虫飞行中的能量消耗:从收缩蛋白到动物的唤醒
- 批准号:
BB/J000523/1 - 财政年份:2012
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
相似国自然基金
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
四足机器人Flight Trot步态切换控制方法研究
- 批准号:61903131
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Flight energetics in Drosophila melanogaster
黑腹果蝇的飞行能量学
- 批准号:
541701-2019 - 财政年份:2019
- 资助金额:
$ 60.83万 - 项目类别:
University Undergraduate Student Research Awards
An integrated approach towards characterising the functional mechanics and energetics of insect flight muscles
表征昆虫飞行肌肉功能力学和能量学的综合方法
- 批准号:
BB/R00109X/1 - 财政年份:2018
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
Bird Flight Energetics - from tissues to free-flight
鸟类飞行能量学 - 从组织到自由飞行
- 批准号:
BB/P020461/1 - 财政年份:2017
- 资助金额:
$ 60.83万 - 项目类别:
Research Grant
The evolution of hummingbird flight kinematics and energetics: the influence of elevation on avian metabolism
蜂鸟飞行运动学和能量学的演变:海拔对鸟类新陈代谢的影响
- 批准号:
442180-2013 - 财政年份:2015
- 资助金额:
$ 60.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
The evolution of hummingbird flight kinematics and energetics: the influence of elevation on avian metabolism
蜂鸟飞行运动学和能量学的演变:海拔对鸟类新陈代谢的影响
- 批准号:
442180-2013 - 财政年份:2014
- 资助金额:
$ 60.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
The evolution of hummingbird flight kinematics and energetics: the influence of elevation on avian metabolism
蜂鸟飞行运动学和能量学的演变:海拔对鸟类新陈代谢的影响
- 批准号:
442180-2013 - 财政年份:2013
- 资助金额:
$ 60.83万 - 项目类别:
Postgraduate Scholarships - Doctoral
The energetics of swimming and flight in squid
乌贼游泳和飞行的能量学
- 批准号:
9592-2013 - 财政年份:2013
- 资助金额:
$ 60.83万 - 项目类别:
Discovery Grants Program - Individual
Scaling of Flight Energetics, Mechanics and Muscle Physiology of Synchronous Flying Insects
同步飞行昆虫的飞行能量学、力学和肌肉生理学的缩放
- 批准号:
8802443 - 财政年份:1988
- 资助金额:
$ 60.83万 - 项目类别:
Continuing Grant
Respiratory and Cardiovascular Physiology and Energetics of Mammalian Flight
哺乳动物飞行的呼吸和心血管生理学和能量学
- 批准号:
7622385 - 财政年份:1977
- 资助金额:
$ 60.83万 - 项目类别:
Standard Grant
Aerodynamics, Energetics and Physiology of Avian Flight
鸟类飞行的空气动力学、能量学和生理学
- 批准号:
6929240 - 财政年份:1969
- 资助金额:
$ 60.83万 - 项目类别:














{{item.name}}会员




