Next generation approaches to connect models and quantitative data
连接模型和定量数据的下一代方法
基本信息
- 批准号:BB/R000816/1
- 负责人:
- 金额:$ 37.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simple mathematical models have been remarkably successful in helping us understand key processes in biology. Traditionally, the utility of models has been to test biological hypotheses by encoding extremely simple descriptions of the biology in a mathematical framework. Mathematical analysis and computer simulation are then used to test whether qualitative predictions of the model match experimental observations. However, biology has advanced to the stage where experimental researchers can generate stunning images of cells and tissues at a level of resolution previously only dreamt of. Being able to visualise, for example, the dynamics of individual mRNAs and proteins over time, means that we can now generate extremely sophisticated hypotheses for how large gene regulatory networks or cells and tissues function. As a result, the mathematical models we develop to test biological hypotheses are quickly growing in size and complexity. In particular, the so-called agent-based models have become a popular tool in the modern life sciences. These allow the modeller to, for example, follow the fates and interactions of individual cells and, at the same time, include the effects of gene regulation and signalling. For these agent-based models to be truly useful, for them to direct experimental efforts or even, eventually, replace the need for some experiments, we need to calibrate them using quantitative data. This simply stated need, however, poses a formidable set of challenges for the modelling community: (i) the models have many parameters that must be estimated; (ii) the data is complex, of multiple different types and rarely, if ever, are all the relevant cells or proteins measured or tracked, for example; (iii) the data are obscured by noise that is both intrinsic to the measured processes and introduced during the experiments. The proposed research will generate new mathematical and computational tools to overcome these challenges. It will enable scientists in the modern life and biomedical sciences to calibrate models, then select the most appropriate model(s), and hence distinguish between competing biological hypotheses. To make sure they are relevant for biology, these new tools will be developed whilst investigating key biological questions. To ensure that the tools are available for re-use and extension by other researchers in the field, all of our computational codes and resources will be made freely available.
简单的数学模型在帮助我们理解生物学的关键过程方面非常成功。传统上,模型的用途是通过在数学框架中编码极其简单的生物学描述来测试生物学假设。然后用数学分析和计算机模拟来检验模型的定性预测是否与实验观测相符。然而,生物学已经发展到这样一个阶段,实验研究人员可以以以前只能梦想的分辨率生成令人惊叹的细胞和组织图像。例如,能够可视化单个mrna和蛋白质随时间的动态,意味着我们现在可以对大型基因调控网络或细胞和组织的功能产生极其复杂的假设。因此,我们开发的用于测试生物学假设的数学模型在规模和复杂性上都在迅速增长。特别是,所谓的基于主体的模型已经成为现代生命科学中流行的工具。这使得建模者能够,例如,跟踪单个细胞的命运和相互作用,同时,包括基因调控和信号传导的影响。为了让这些基于主体的模型真正有用,为了让它们指导实验工作,甚至最终取代对某些实验的需求,我们需要使用定量数据来校准它们。然而,这种简单的需求对建模界提出了一系列艰巨的挑战:(i)模型有许多必须估计的参数;(ii)数据复杂,有多种不同类型,并且很少(如果有的话)测量或跟踪所有相关细胞或蛋白质;(iii)数据被噪声所掩盖,这些噪声既是测量过程固有的,也是实验过程中引入的。拟议的研究将产生新的数学和计算工具来克服这些挑战。它将使现代生命科学和生物医学科学的科学家能够校准模型,然后选择最合适的模型,从而区分相互竞争的生物学假设。为了确保它们与生物学相关,这些新工具将在研究关键生物学问题的同时开发。为了确保这些工具可以被该领域的其他研究人员重用和扩展,我们所有的计算代码和资源都将免费提供。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasi-Monte Carlo Methods Applied to Tau-Leaping in Stochastic Biological Systems.
- DOI:10.1007/s11538-018-0442-2
- 发表时间:2019-08
- 期刊:
- 影响因子:3.5
- 作者:Beentjes CHL;Baker RE
- 通讯作者:Baker RE
Accurate and efficient discretisations for stochastic models providing near agent-based spatial resolution at low computational cost
准确高效的随机模型离散化以低计算成本提供近乎基于代理的空间分辨率
- DOI:10.1101/686030
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Fadai N
- 通讯作者:Fadai N
A free boundary model of epithelial dynamics
上皮动力学的自由边界模型
- DOI:10.1101/433813
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Baker R
- 通讯作者:Baker R
Uniformisation techniques for stochastic simulation of chemical reaction networks
化学反应网络随机模拟的均匀化技术
- DOI:10.48550/arxiv.1811.00948
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Beentjes C
- 通讯作者:Beentjes C
Uniformization techniques for stochastic simulation of chemical reaction networks.
化学反应网络随机模拟的均匀化技术。
- DOI:10.1063/1.5081043
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Beentjes CHL
- 通讯作者:Beentjes CHL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Baker其他文献
Portraying What is in Front of You: Virtual Tours and Online Whiteboards to Facilitate Art Practice during the COVID-19 Pandemic
描绘眼前的事物:虚拟游览和在线白板促进 COVID-19 大流行期间的艺术实践
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Makayla M. Lewis;Mauro Toselli;Ruth Baker;Julia Rédei;Claire Elisabeth Ohlenschlager - 通讯作者:
Claire Elisabeth Ohlenschlager
03-P009 A random cell motility gradient downstream of FGF controls elongation of amniote embryos
- DOI:
10.1016/j.mod.2009.06.062 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:
- 作者:
Bertrand Bénazéraf;Paul Francois;Ruth Baker;Charles Little;Olivier Pourquié - 通讯作者:
Olivier Pourquié
Platinum refractory advanced stage ovarian clear cell carcinoma: time to reconsider primary therapy?
- DOI:
10.1016/s0090-8258(21)01101-x - 发表时间:
2021-08-01 - 期刊:
- 影响因子:
- 作者:
Ruth Baker;Anne Eaton;Mahmoud Khalifa;Reuben Harris;Britt Erickson - 通讯作者:
Britt Erickson
Ruth Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Baker', 18)}}的其他基金
Investigating the evolution of cancer cells through single cell genomic data.
通过单细胞基因组数据研究癌细胞的进化。
- 批准号:
NE/T014199/1 - 财政年份:2020
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant
Multiscale modelling of cellular oscillators: applications to vertebrate segmentation and hair follicle cycling.
细胞振荡器的多尺度建模:在脊椎动物分割和毛囊循环中的应用。
- 批准号:
EP/F069200/1 - 财政年份:2009
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant
相似国自然基金
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
- 批准号:82371660
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Next Generation Majorana Nanowire Hybrids
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
二次谐波非线性光学显微成像用于前列腺癌的诊断及药物疗效初探
- 批准号:30470495
- 批准年份:2004
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Next-generation automation and PAT implementation for QbD and enhanced approaches for cell and gene therapy
QbD 的下一代自动化和 PAT 实施以及细胞和基因治疗的增强方法
- 批准号:
10087446 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Collaborative R&D
RII Track-4: @NASA: Next Generation Hyperspectral Approaches to Detect Harmful Algal Blooms
RII Track-4:@NASA:检测有害藻华的下一代高光谱方法
- 批准号:
2327287 - 财政年份:2024
- 资助金额:
$ 37.88万 - 项目类别:
Standard Grant
Using new Next Generation Sequencing (NGS) approaches to analyze the fidelity of HIV reverse transcription in Endogenous Reverse Transcription reactions (ERT)
使用新的下一代测序 (NGS) 方法来分析内源性逆转录反应 (ERT) 中 HIV 逆转录的保真度
- 批准号:
10759845 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
next-generation sequencing approaches to identify genotype-phenotype relationships during miRNA tuning of neural crest osteogenesis
新一代测序方法可识别神经嵴成骨过程中 miRNA 调节过程中的基因型与表型关系
- 批准号:
10579800 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Enzymatic Approaches for Next Generation Peptide Synthesis
下一代肽合成的酶法
- 批准号:
EP/Y023714/1 - 财政年份:2023
- 资助金额:
$ 37.88万 - 项目类别:
Fellowship
Applying next generation genetic approaches for trait discovery in the commercial vegetable industry
应用下一代遗传方法在商业蔬菜行业发现性状
- 批准号:
2750080 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Studentship
MICA: Combinational therapeutic approaches using regenerative medicine and next generation antivenoms to prevent/treat snakebite-induced muscle damage
MICA:使用再生医学和下一代抗蛇毒血清的组合治疗方法来预防/治疗蛇咬伤引起的肌肉损伤
- 批准号:
MR/W019353/1 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Research Grant
Developing Next-Generation Physiology approaches for human gut microbiome research
开发用于人类肠道微生物组研究的下一代生理学方法
- 批准号:
10678951 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Efficient, Sustainable and Intelligent Resource Allocation Approaches for the Next Generation of Wireless Communication Systems
下一代无线通信系统的高效、可持续和智能资源分配方法
- 批准号:
RGPIN-2022-05029 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Principled Approaches to Securing Next-Generation Cellular Networks
职业:保护下一代蜂窝网络的原则性方法
- 批准号:
2145631 - 财政年份:2022
- 资助金额:
$ 37.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




