Bayesian and machine-learning-based analysis of high-volume super-resolution microscopy data for molecular-level cell phenotyping
基于贝叶斯和机器学习的大容量超分辨率显微镜数据分析,用于分子水平细胞表型分析
基本信息
- 批准号:BB/R007365/1
- 负责人:
- 金额:$ 50.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of Single Molecule Localisation Microscopy (SMLM) is booming within the biological research community. By exploiting the temporal separation of fluorescent molecules, proteins can be localised to nano-scale spatial precision allowing researchers to explore the structure and dynamics of cellular processes at unprecedented levels of detail. However, analysis of such data is still restricted to be largely qualitative and based around visual inspection of reconstructed images. Given the fantastic recent progress of Bayesian and machine-learning statistical methodology, there is the opportunity to develop a fully quantitative alternative approach. In fact, we propose that we can learn a full generative model for molecular-level cellular architecture. This approach will allow us to answer previously impossible phenotypical biological questions relating to the organisation and co-organisation of sub-cellular structures, for example: 1. "Is the clustering of a membrane protein caused by the underlying actin cytoskeleton?" (the hypothesis testing problem)2. "Does a drug change the relationship between a membrane protein and the cytoskeleton" (the classification problem)3. "Is the emergence of a cancerous cell in a normal population detectable from changes in its nanoscale architecture" (the anomaly detection problem)We postulate that complex architectural arrangements can be described by the composition and coordination of simpler morphological elements. At their most basic, these might be simple clusters or aggregates of molecules. More complicated elements could include a complex, branched fibrous structure. We have been at the forefront of developing cluster analysis methodology for SMLM. We will approach the (much) larger problem of describing cellular architecture by first building a full cluster and fibre analysis toolkit for 2 and 3D SMLM data. Next, we will acquire high-volume multi-colour SMLM data and develop Bayesian machine-learning methodology to learn the probabilistic composition and coordination of simpler morphological elements (e.g. as identified through our toolkit) to give a full generative model for cellular architecture. Once achieved, we will further develop a statistical and machine-learning layer of inference methodology to address phenotypical questions such as those given above. The main biological application we will examine during this project is the architecture of the T cell immunological synapse which is key for regulating T cell activation and hence the immune response. This opens the exciting opportunity to collaborate with clinicians and drug developers to test how therapeutic agents affect molecular-level cellular architecture.
单分子定位显微镜(SMLM)的使用在生物研究界蓬勃发展。通过利用荧光分子的时间分离,蛋白质可以定位到纳米级的空间精度,使研究人员能够以前所未有的细节水平探索细胞过程的结构和动力学。然而,这种数据的分析仍然被限制在很大程度上是定性的,并且基于对重建图像的视觉检查。鉴于贝叶斯和机器学习统计方法最近取得了惊人的进步,现在有机会开发一种完全定量的替代方法。事实上,我们提出,我们可以学习一个完整的分子水平细胞结构的生成模型。这种方法将使我们能够回答以前不可能的与亚细胞结构的组织和共同组织有关的表型生物学问题,例如:1。“膜蛋白的聚集是由潜在的肌动蛋白细胞骨架引起的吗?”(假设检验问题)1.“一种药物会改变膜蛋白和细胞骨架之间的关系吗”(分类问题)3。“在正常人群中癌细胞的出现是可以从其纳米尺度结构的变化中检测到的”(异常检测问题)我们假设复杂的结构安排可以通过更简单的形态元素的组成和协调来描述。在最基本的情况下,它们可能是简单的分子簇或聚集体。更复杂的元素可能包括复杂的分枝纤维结构。我们一直站在为SMLM开发集群分析方法的前沿。我们将通过首先为2和3D SMLM数据构建完整的集群和光纤分析工具包来解决描述蜂窝体系结构的(大得多)问题。接下来,我们将获取大量的多颜色SMLM数据,并开发贝叶斯机器学习方法来学习更简单的形态元素的概率组成和协调(例如,通过我们的工具包识别),以给出一个完整的细胞结构生成模型。一旦实现,我们将进一步开发统计和机器学习推理方法层,以解决上述表型问题。我们将在这个项目中研究的主要生物学应用是T细胞免疫突触的结构,它是调节T细胞激活从而调节免疫反应的关键。这开启了与临床医生和药物开发商合作的令人兴奋的机会,以测试治疗剂如何影响分子水平的细胞结构。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Super-Resolution Imaging Approaches for Quantifying F-Actin in Immune Cells.
- DOI:10.3389/fcell.2021.676066
- 发表时间:2021
- 期刊:
- 影响因子:5.5
- 作者:Garlick E;Thomas SG;Owen DM
- 通讯作者:Owen DM
Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules.
- DOI:10.1038/s41467-020-20863-0
- 发表时间:2021-01-22
- 期刊:
- 影响因子:16.6
- 作者:Szalai AM;Siarry B;Lukin J;Williamson DJ;Unsain N;Cáceres A;Pilo-Pais M;Acuna G;Refojo D;Owen DM;Simoncelli S;Stefani FD
- 通讯作者:Stefani FD
Multi-colour DNA-qPAINT reveals how Csk nano-clusters regulate T-cell receptor signalling
多色 DNA-qPAINT 揭示 Csk 纳米簇如何调节 T 细胞受体信号传导
- DOI:10.1101/857516
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Simoncelli S
- 通讯作者:Simoncelli S
Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules
通过单分子光度定位实现纳米轴向分辨率的三维全内反射荧光纳米镜
- DOI:10.1101/693994
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Szalai A
- 通讯作者:Szalai A
The Role of Protein and Lipid Clustering in Lymphocyte Activation.
- DOI:10.3389/fimmu.2021.600961
- 发表时间:2021
- 期刊:
- 影响因子:7.3
- 作者:Lamerton RE;Lightfoot A;Nieves DJ;Owen DM
- 通讯作者:Owen DM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dylan Owen其他文献
Clustering of the Mechanosensitive Ion Channels of Large and Small Conductance MscL and MscS - a FRET-Flim Study
- DOI:
10.1016/j.bpj.2011.11.674 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Charles G. Cranfield;Evelyne Deplazes;Alex MacMillan;Dylan Owen;Takeshi Nomura;Maryrose Constantine;Ben Corry;Boris Martinac - 通讯作者:
Boris Martinac
Molecular Mechanism of T Cell Signaling
- DOI:
10.1016/j.bpj.2011.11.128 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Katharina Gaus;David Williamson;Jeremie Rossy;Dylan Owen;Astrid Magenau - 通讯作者:
Astrid Magenau
Dylan Owen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dylan Owen', 18)}}的其他基金
A curated, publically-accessible database of protein nanoscale organisation
蛋白质纳米级组织的精选、可公开访问的数据库
- 批准号:
BB/X018644/1 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Research Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
非标准随机调度模型的最优动态策略
- 批准号:71071056
- 批准年份:2010
- 资助金额:28.0 万元
- 项目类别:面上项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Bayesian Machine Learning as a tool for Climate Scientists: An In-Person Workshop at the University of Cambridge
贝叶斯机器学习作为气候科学家的工具:剑桥大学的面对面研讨会
- 批准号:
NE/Y003675/1 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Training Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Resolving cosmological tensions with diverse data, novel theories and Bayesian machine learning
用多样化的数据、新颖的理论和贝叶斯机器学习解决宇宙学的紧张关系
- 批准号:
EP/X035344/1 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Research Grant
Bayesian machine learning for complex missing data and causal inference with a focus on cardiovascular and obesity studies
用于复杂缺失数据和因果推理的贝叶斯机器学习,重点关注心血管和肥胖研究
- 批准号:
10563598 - 财政年份:2023
- 资助金额:
$ 50.84万 - 项目类别:
Machine Learning for Bayesian Inverse Problems
贝叶斯逆问题的机器学习
- 批准号:
2208535 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215169 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Standard Grant
Collaborative Research: Randomization Based Machine Learning Methods in a Bayesian Model Setting for Data From a Complex Survey or Census
协作研究:针对复杂调查或人口普查数据的贝叶斯模型设置中基于随机化的机器学习方法
- 批准号:
2215168 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Standard Grant
Integrated IoT Sensing and Edge Computing Coupled with a Bayesian Network Model for Exposure Assessment and Targeted Remediation of Vapor Intrusion
集成物联网传感和边缘计算与贝叶斯网络模型相结合,用于暴露评估和蒸汽入侵的针对性修复
- 批准号:
10700801 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
- 批准号:
10620291 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Using Bayesian Machine Learning to Study Type Ia Supernovae
使用贝叶斯机器学习研究 Ia 型超新星
- 批准号:
2780093 - 财政年份:2022
- 资助金额:
$ 50.84万 - 项目类别:
Studentship














{{item.name}}会员




