Probing mechanisms of pathogen effector recognition by plant Resistance proteins to elevate defence gene activation
探究植物抗性蛋白识别病原体效应子以提高防御基因激活的机制
基本信息
- 批准号:BB/R012172/1
- 负责人:
- 金额:$ 38.72万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant diseases contribute greatly to annual crop losses and pose a real threat to food security worldwide. Indeed, many other food- and cash-crops such as wheat, rice, maize, soybean, barley, potato, cotton, canola, and others are susceptible to many different types of diseases. Over a million people died during the Great Irish Famine in the 19th century as the result of a potato blight epidemic. Currently, the world's most popular fruit, the Cavendish banana, is under threat of extinction due to infection by highly virulent fungal pathogens [1]. Recently, the reduction of citrus yields also largely affects the manufacture and economy, due to the infection of 'tree-killing' bacteria [2].Plant diseases also threaten the environment. There are >80 million Ash trees growing in UK forests and along neighborhood roads currently under threat of Ash dieback disease, caused by a relentless fungal pathogen [3]. Recent estimates project that 75% of Ash trees in the south and east England will be infected by this disease by 2018 [3]. Battling diseases that affect our crops and trees is a global challenge requiring the work of scientists in both academia and industry, as well as the work of policy-makers and government.Pathogens are capable of infecting plants and causing disease largely because they can suppress plant immune systems. Thus, only when we clearly understand plant immunity will we be able to offer sustainable solutions to diseases that affect our crops.Scientists in the UK have always been seeking knowledge of how to achieve durable and sustainable disease resistance for crops. Understanding the molecular mechanism by which plants establish full resistance against various pathogens is essential to design better strategies for protecting crops from field diseases. The plant immune system is multifaceted and composed of many different proteins with broad functions. In the battle between the host and pathogens, plant gene expression and regulations play a central role in establishing an effective immune response.The aim of this work is to find out exactly how immune gene regulators, especially transcription factors (proteins that regulate gene expressions), work at the molecular level, how they are activated or repressed, and how they influence the amplitude of immune responses. Different pathogens use different strategies to attack the same host plants, so a major challenge is how to boost the plant immunity against all pathogens without compromise; with the correct combinations, and how to control their expression precisely. Understanding the changes to chromatin (histone protein with DNA molecules) that occur during the immune process is key to decode the genetic information of immune gene regulations.To address these important questions, I will study host proteins involved in the interaction between the model plant Arabidopsis and its pathogens. Working with a model plant offers many advantages over directly studying crop plants, the most important being the wealth of genetic and technological tools available (fully sequenced and annotated genome, thousands of mutants and worldwide data repositories) and the general ease of experimentation (small stature, fast growth, and convenient breeding techniques). The project will be undertaken at the Sainsbury Laboratory in Norwich [4], a world-leading research institute dedicated to working on plant-microbe interactions, and will involve collaborative work with laboratories in Canada. Knowledge gained from this project will advance our understanding of how plants defend themselves against pathogens and provide agricultural practices to improve crop yield.[1] 'Yes, we have no bananas' The Economist (1 March 2014); [2] 'Florida's orange groves are being wiped out by tree-killing bacteria' the Columbia Broadcasting System (CBS) News (26 October 2016); [3] 'Ash dieback 'could affect 75% of trees worst hit areas'' The Guardian (30 April 2014); [4] www.tsl.ac.uk.
植物病害在很大程度上造成了每年的作物损失,并对全世界的粮食安全构成了真正的威胁。事实上,许多其他粮食和经济作物,如小麦、水稻、玉米、大豆、大麦、马铃薯、棉花、油菜籽和其他作物,易患许多不同类型的疾病。19世纪,由于马铃薯枯萎病的流行,一百多万人死于爱尔兰大饥荒。目前,世界上最受欢迎的水果,卡文迪什香蕉,由于高毒力真菌病原体[1]的感染,正面临灭绝的威胁。最近,由于“杀树”细菌[2]的感染,柑橘产量的减少也在很大程度上影响了生产和经济。植物病害也威胁着环境。在英国的森林和附近的道路上生长着大约8000万棵白蜡树,目前正受到白蜡树枯梢病的威胁,这种病是由一种无情的真菌病原体引起的。最近的估计显示,到2018年,英格兰南部和东部75%的白蜡树将感染这种疾病。与影响我们农作物和树木的疾病作斗争是一项全球性挑战,需要学术界和工业界的科学家以及决策者和政府的工作。病原体之所以能够感染植物并引起疾病,很大程度上是因为它们可以抑制植物的免疫系统。因此,只有当我们清楚地了解植物的免疫力时,我们才能为影响我们作物的疾病提供可持续的解决方案。英国的科学家们一直在寻求如何使作物获得持久和可持续的抗病能力的知识。了解植物对各种病原体建立完全抗性的分子机制对于设计更好的保护作物免受田间病害的策略至关重要。植物免疫系统是多方面的,由许多不同的蛋白质组成,具有广泛的功能。在宿主与病原体的斗争中,植物基因表达和调控在建立有效的免疫应答中起着核心作用。这项工作的目的是找出免疫基因调节因子,特别是转录因子(调节基因表达的蛋白质)在分子水平上是如何工作的,它们是如何被激活或抑制的,以及它们是如何影响免疫反应的幅度的。不同的病原体使用不同的策略来攻击相同的寄主植物,因此一个主要的挑战是如何在不妥协的情况下增强植物对所有病原体的免疫力;用正确的组合,以及如何精确地控制它们的表达。了解免疫过程中染色质(组蛋白与DNA分子)的变化是解码免疫基因调控遗传信息的关键。为了解决这些重要的问题,我将研究模式植物拟南芥与其病原体之间相互作用的宿主蛋白。与直接研究作物植物相比,使用模式植物有许多优势,最重要的是可用的遗传和技术工具的财富(完全测序和注释的基因组,数千个突变体和全球数据存储库)以及实验的一般易用性(身材小,生长快,育种技术方便)。该项目将在诺维奇的塞恩斯伯里实验室进行,这是一家致力于研究植物与微生物相互作用的世界领先的研究机构,并将涉及与加拿大实验室的合作。从该项目中获得的知识将促进我们对植物如何抵御病原体的理解,并提供提高作物产量的农业实践。[1]“是的,我们没有香蕉”《经济学人》(2014年3月1日);哥伦比亚广播公司(CBS)新闻(2016年10月26日):“佛罗里达州的橘子林正在被杀死树木的细菌摧毁。”[3]“灰枯病”可能影响受灾最严重地区75%的树木”《卫报》(2014年4月30日);[4] www.tsl.ac.uk。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deadlier than the malate
- DOI:10.1038/s41422-018-0042-6
- 发表时间:2018-05
- 期刊:
- 影响因子:44.1
- 作者:P. Ding;Hailong Guo;Jonathan D. G. Jones
- 通讯作者:P. Ding;Hailong Guo;Jonathan D. G. Jones
High-resolution Expression Profiling of Selected Gene Sets during Plant Immune Activation
植物免疫激活过程中选定基因集的高分辨率表达谱
- DOI:10.1101/775973
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Ding P
- 通讯作者:Ding P
Low-cost and High-throughput RNA-seq Library Preparation for Illumina Sequencing from Plant Tissue
- DOI:10.21769/bioprotoc.3799
- 发表时间:2020-10-20
- 期刊:
- 影响因子:0.8
- 作者:Bjornson, Marta;Kajala, Kaisa;Ding, Pingtao
- 通讯作者:Ding, Pingtao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PINGTAO DING其他文献
PINGTAO DING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Pathogenicity and Host Specificity of the Oomycete Plant Pathogen Phytophthora palmivora
卵菌类植物病原棕榈疫霉的致病机制和寄主特异性
- 批准号:
2418799 - 财政年份:2024
- 资助金额:
$ 38.72万 - 项目类别:
Continuing Grant
Escaping host immunity: Characterising immune evasion mechanisms employed by the bacterial pathogen Staphylococcus aureus.
逃避宿主免疫:描述细菌病原体金黄色葡萄球菌采用的免疫逃避机制。
- 批准号:
2885861 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Studentship
Mechanisms underlying diarrhea and gut inflammation mediated by Enterotoxigenic and Enteropathogenic E. coli
产肠毒素和致病性大肠杆菌介导的腹泻和肠道炎症的机制
- 批准号:
10674072 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
NLRP10 Inflamasome in Gram-positive Sepsis
革兰氏阳性脓毒症中的 NLRP10 炎性体
- 批准号:
10680214 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Mechanisms of osteocyte induction and regulation of pathogen-induced osteolysis
骨细胞诱导机制和病原体引起的骨溶解的调节
- 批准号:
10648513 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
In vivo relevance of the Schlafen-mediated innate immune mechanism in flavivirus infection
黄病毒感染中 Schlafen 介导的先天免疫机制的体内相关性
- 批准号:
10629718 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Complement Protein C1q Regulation of Macrophage Metabolic Pathways
补体蛋白 C1q 对巨噬细胞代谢途径的调节
- 批准号:
10629550 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
B Cell Epitope Discovery and Mechanisms of Antibody Protection: Responses to Dengue 4, Powassan, Chikungunya, and Venezuelan Equine Encephalitis Viruses
B 细胞表位发现和抗体保护机制:对登革热 4、Powassan、基孔肯雅热和委内瑞拉马脑炎病毒的反应
- 批准号:
10909763 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别: