Gene-drive system for efficient chloroplast transformation

用于高效叶绿体转化的基因驱动系统

基本信息

  • 批准号:
    BB/R021937/1
  • 负责人:
  • 金额:
    $ 19.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Plants contain three genomes, the nuclear, the chloroplast and the mitochondrial. The nuclear genome is the largest and typically encodes in excess of 27,000 genes using from 120 million to several thousand base pairs depending on plant species. In contrast, the chloroplast typically encodes only 120 genes using just 150 thousand base pairs. However, a leaf cell can contain in excess of 100 chloroplasts each with 100 copies of the chloroplast genome. Thus despite representing just 0.1% of the sequence complexity of the cell, chloroplasts can contribute up over 10% of the DNA content. In part because of this, genes located on the chloroplast genome can produce much higher levels of protein than an equivalent single copy gene located on the nuclear genome (up to 300 fold higher). In addition, chloroplasts are excluded from pollen and the chloroplast DNA is only inherited from the pollinated and not the pollinating crop plant. This has made chloroplasts very attractive as "green factories" for producing novel high value proteins, metabolites and bio-polymers where high levels of gene expression are required. However, generating plants containing the introduced DNA sequence in their chloroplast rather than their nuclear genome is challenging, and selecting plants in which every chloroplast genome in every chloroplast in every cell is modified (referred to as homoplastomic) is time consuming and inefficient. Making sure that plants are homoplastomic is important, as if this is not done, the wild type chloroplast genomes tend to outcompete and displace the transgenic ones when the plant is removed from selective media and placed in soil. Transformation of chloroplasts was first achieved nearly three decades ago, yet high-throughput, multi-species plastid transformation methods are still missing. Several plants species have been successfully used as green cell factories for the production of high value molecules such as vaccines, antimicrobials and other biopharmaceuticals. The technology has now reached the point where some of these are in commercial production in glasshouses in several European facilities. Other high value products such as designer "fish oils" are currently being evaluated in UK field trials of genetically modified oilseed crops. Chloroplast engineering has the potential to dramatically increase yields of such products, but this technology has been held back by the technical challenges described above that will be addressed in this project. We will develop a novel transformation system using gene editing tools (CRISPR/Cas9) that will increase the efficiency of the initial transformation event and that will result in the introduced DNA rapidly spreading and replacing wild type chloroplast genomes, even in the absence of ongoing growth on selective media. This "gene-drive" mechanism will dramatically reduce the bottleneck in producing chloroplast engineered plants. Unlike other gene-drive systems that have been proposed (eg for eliminating malaria), the system here will be split so that the rapid spread is dependent upon the presence of a previously engineered nuclear background.
植物包含三个基因组:细胞核、叶绿体和线粒体。核基因组是最大的,通常编码超过27,000个基因,使用从1.2亿到数千个碱基对,具体取决于植物物种。相比之下,叶绿体通常只使用15万个碱基对编码120个基因。然而,一个叶细胞可以包含超过100个叶绿体,每个叶绿体基因组有100个拷贝。因此,尽管只占细胞序列复杂性的0.1%,叶绿体却能贡献超过10%的DNA含量。部分原因是,位于叶绿体基因组上的基因可以产生比位于核基因组上的同等单拷贝基因高得多的蛋白质(高达300倍)。此外,叶绿体不存在于花粉中,叶绿体DNA仅遗传自受粉作物而非传粉作物。这使得叶绿体作为“绿色工厂”非常有吸引力,用于生产需要高水平基因表达的新型高价值蛋白质、代谢物和生物聚合物。然而,培育叶绿体中含有引入DNA序列而不是核基因组的植物是具有挑战性的,并且选择每个细胞中每个叶绿体中的每个叶绿体基因组都被修饰(称为同质体)的植物既耗时又低效。确保植物是同质性是很重要的,因为如果不这样做,当植物从选择性培养基中移除并放置在土壤中时,野生型叶绿体基因组往往会超越并取代转基因基因组。叶绿体的转化在近30年前首次实现,但高通量、多物种的质体转化方法仍然缺乏。一些植物物种已被成功地用作绿色细胞工厂,用于生产高价值分子,如疫苗、抗菌剂和其他生物制药。这项技术现在已经达到了在几个欧洲设施的温室中进行商业生产的程度。其他高价值产品,如设计“鱼油”,目前正在英国转基因油籽作物的田间试验中进行评估。叶绿体工程具有显著提高此类产品产量的潜力,但这项技术一直受到上述技术挑战的阻碍,这些挑战将在本项目中得到解决。我们将使用基因编辑工具(CRISPR/Cas9)开发一种新的转化系统,该系统将提高初始转化事件的效率,并将导致引入的DNA迅速扩散并取代野生型叶绿体基因组,即使在没有选择性培养基上持续生长的情况下也是如此。这种“基因驱动”机制将大大减少生产叶绿体工程植物的瓶颈。与已经提出的其他基因驱动系统(例如用于消除疟疾)不同,这里的系统将被分割,以便快速传播依赖于先前设计的核背景的存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Katalin Kovacs其他文献

Quasi-Phase-Matching High-Harmonic Radiation Using Chirped THz Pulses
  • DOI:
    10.1103/physrevlett.108.193903
  • 发表时间:
    2012-05-08
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Katalin Kovacs;Emeric Balogh;Katalin Varju
  • 通讯作者:
    Katalin Varju

Katalin Kovacs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Katalin Kovacs', 18)}}的其他基金

'21ENGBIO' Towards SYnthetic CHLOroPlastS (SYCHLOPS)
“21ENGBIO”迈向合成叶绿体 (SYCHLOPS)
  • 批准号:
    BB/W01260X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 19.31万
  • 项目类别:
    Research Grant

相似国自然基金

基于指令层次的网页木马渗透攻击机理分析与检测方法研究
  • 批准号:
    61003217
  • 批准年份:
    2010
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
  • 批准号:
    10727359
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Impact of gene-drive systems for population modification on malaria vector mosquitoes
基因驱动系统对疟疾媒介蚊子种群改造的影响
  • 批准号:
    10658710
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Investigating CovRS activation within skin microenvironments to drive heterogenicity of Streptococcus pyogenes gene expression
研究皮肤微环境中的 CovRS 激活以驱动化脓性链球菌基因表达的异质性
  • 批准号:
    10751462
  • 财政年份:
    2023
  • 资助金额:
    $ 19.31万
  • 项目类别:
Retrotransposon derived promoters drive alternative host gene isoforms with important developmental functions
逆转录转座子衍生的启动子驱动具有重要发育功能的替代宿主基因亚型
  • 批准号:
    10651867
  • 财政年份:
    2022
  • 资助金额:
    $ 19.31万
  • 项目类别:
Optimization of low-threshold Cas9-based gene drive systems to introduce Zika virus resistance in Aedes aegypti
优化基于 Cas9 的低阈值基因驱动系统,以在埃及伊蚊中引入寨卡病毒抗性
  • 批准号:
    10667935
  • 财政年份:
    2022
  • 资助金额:
    $ 19.31万
  • 项目类别:
Retrotransposon derived promoters drive alternative host gene isoforms with important developmental functions
逆转录转座子衍生的启动子驱动具有重要发育功能的替代宿主基因亚型
  • 批准号:
    10467805
  • 财政年份:
    2022
  • 资助金额:
    $ 19.31万
  • 项目类别:
Elucidating the gene regulatory networks that drive neural regeneration
阐明驱动神经再生的基因调控网络
  • 批准号:
    10541717
  • 财政年份:
    2022
  • 资助金额:
    $ 19.31万
  • 项目类别:
A Gene Drive Therapy for HIV: single-administration intervention for high-risk groups
HIV基因驱动疗法:针对高危人群的单次给药干预
  • 批准号:
    10404422
  • 财政年份:
    2021
  • 资助金额:
    $ 19.31万
  • 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
  • 批准号:
    10278897
  • 财政年份:
    2021
  • 资助金额:
    $ 19.31万
  • 项目类别:
Personalization and Failure Testing of Dual Switch Gene Drives in Lung Cancer
肺癌双开关基因驱动的个性化和故障测试
  • 批准号:
    10818035
  • 财政年份:
    2021
  • 资助金额:
    $ 19.31万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了