PhytoMOPS: Phytoplankton Morphology and Optical Properties Sensor

PhytoMOPS:浮游植物形态和光学特性传感器

基本信息

  • 批准号:
    BB/S004424/2
  • 负责人:
  • 金额:
    $ 7.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Algae are present in nearly every body of water on the surface of the earth. These microscopic organisms produce roughly half of the oxygen on earth, and are vital to life on the planet. However, algae can also cause significant and expensive damage to their ecosystem, to human health, and to aquaculture stocks when the local environment changes and promotes the rapid growth of a large mass of algae, known as a bloom. Factors such as the concentration of nutrients, temperature, light conditions, and intentional or unintentional interventions by humans or other species all affect the dynamics of algae species and lead to the formation of harmful algal blooms (HABs). In the aquaculture context, HABs present a major health and economic hazard. Severe human health problems can arise from the consumption of shellfish which have been impacted by blooms of toxin-producing algae. These blooms also cause negative economic impacts on aquaculture through aquaculture stock mortality and through temporary site closures and bans on harvesting due to local algae prevalence. Large-scale mortalities of cultured fish due to algae blooms have been reported across the world and financial losses per large episode can range into the tens of millions of pounds. Monitoring of phytoplankton and of the toxins they produce has been undertaken in various forms in the UK for some decades but manual sampling and subsequent off-site analysis can be slow to identify areas with upcoming or rapidly-changing problems. Microscopy, the current standard for performing algae counts, requires trained personnel both in collection and particularly in analysis, and imposes a necessary delay as samples need to be preserved and transported to an analytical facility. The overall objective of this project is to develop new technology to decrease the economic losses and health risks caused by HABs by decreasing the costs of monitoring algae growth in real-time. This technology will complement and address shortcomings in existing monitoring techniques by providing low-cost, high resolution independent data. The PhytoMOPS technology is based on previous lab-based research demonstrating that algal cells could be sorted, counted, and classified using carefully-designed microfluidic channels combined with low-cost optical readouts. The sorting technique, known as "inertial microfluidics", relies on a carefully-designed channel geometry and flow rate to sort cells by shape and size. In this project, we will design a novel optical measurement section after the cell sorting region, in which the microalgal cells are counted and classfied according to their size, shape, and optical absorption properties. The technology will initially be built and evaluated in the lab where the results will be used to develop analytical methods for interpreting the data. In order to be able to make measurements directly in the water, we will adapt the National Oceanography Centre's (NOC's) water chemistry sensor platform which has already been used for long-term autonomous measurements in a wide range of harsh and inaccessible environments. We will combine the well-engineering NOC platform (including microfluidic chips, pumps, valves, and control/communication electronics) with the algae sorting technology to produce a deployable system capable of acting as a standalone, low-cost, low-power monitor of algal species dynamics for early warning of HABS formation. Lastly, this project involves initial field tests of the system. The deployments will be facilitated by two active HAB monitoring organisations who are also providing expert advice throughout the project: the Scottish Assocation for Marine Science and the Agri-Food Bioscience Institute (North Ireland). The system will will be compared directly against manual sampling and existing algal monitoring technology and will be be evaluated for its technical suitability, usability, and long-term potential.
藻类几乎存在于地球表面的每一个水体中。这些微生物产生了地球上大约一半的氧气,对地球上的生命至关重要。然而,当当地环境发生变化并促进大量藻类快速生长时,藻类也会对其生态系统、人类健康和水产养殖种群造成重大和昂贵的损害。营养物浓度、温度、光照条件以及人为或其他物种有意或无意的干预等因素都会影响藻类物种的动态,并导致有害藻华的形成。在水产养殖方面,有害藻华对健康和经济构成重大危害。食用贝类会引起严重的人类健康问题,因为这些贝类受到产毒藻类大量繁殖的影响。这些藻华还对水产养殖造成负面的经济影响,原因是水产养殖种群死亡,以及由于当地藻类普遍存在而临时关闭养殖场和禁止捕捞。据报道,世界各地都有养殖鱼类因藻类大量繁殖而大规模死亡的报道,每次大规模事件的经济损失可达数千万英镑。几十年来,英国对浮游植物及其产生的毒素进行了各种形式的监测,但手工取样和随后的非现场分析可能会很慢,无法确定即将出现或迅速变化的问题的区域。显微镜是目前进行藻类计数的标准,需要训练有素的人员进行收集,特别是在分析方面,并且由于需要保存样品并将其运送到分析设施,因此会造成必要的延迟。该项目的总体目标是开发新技术,通过降低实时监测藻类生长的成本,减少有害藻华造成的经济损失和健康风险。该技术将通过提供低成本、高分辨率的独立数据来补充和解决现有监测技术的缺点。PhytoMOPS技术是基于先前的实验室研究,该研究表明,使用精心设计的微流体通道结合低成本光学读数,藻类细胞可以被分类、计数和分类。这种分选技术被称为“惯性微流体”,它依靠精心设计的通道几何形状和流速来根据形状和大小对细胞进行分选。在本项目中,我们将在细胞分选区之后设计一个新的光学测量区,根据微藻细胞的大小、形状和光学吸收特性对微藻细胞进行计数和分类。该技术最初将在实验室建立和评估,结果将用于开发解释数据的分析方法。为了能够直接在水中进行测量,我们将采用国家海洋学中心(NOC)的水化学传感器平台,该平台已经用于在各种恶劣和难以进入的环境中进行长期自主测量。我们将把油井工程NOC平台(包括微流控芯片、泵、阀门和控制/通信电子设备)与藻类分选技术结合起来,形成一个可部署的系统,能够作为一个独立的、低成本的、低功耗的藻类物种动态监测系统,用于HABS形成的早期预警。最后,本项目涉及系统的初步现场测试。部署将由两个活跃的有害藻华监测组织促进,它们也在整个项目中提供专家建议:苏格兰海洋科学协会和农业食品生物科学研究所(北爱尔兰)。该系统将直接与人工采样和现有的藻类监测技术进行比较,并将对其技术适用性、可用性和长期潜力进行评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Schaap其他文献

Optofluidic microdevice for algae classification: a comparison of results from discriminant analysis and neural network pattern recognition
用于藻类分类的光流控微器件:判别分析和神经网络模式识别结果的比较
  • DOI:
    10.1117/12.907012
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison Schaap;T. Rohrlack;Y. Bellouard
  • 通讯作者:
    Y. Bellouard
Transport and size-separation of airborne particles in a microchannel for continuous particle monitoring
  • DOI:
    10.14288/1.0071473
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allison Schaap
  • 通讯作者:
    Allison Schaap

Allison Schaap的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Schaap', 18)}}的其他基金

PhytoMOPS: Phytoplankton Morphology and Optical Properties Sensor
PhytoMOPS:浮游植物形态和光学特性传感器
  • 批准号:
    BB/S004424/1
  • 财政年份:
    2018
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Co-evolution of phytoplankton dynamics and environment at the Fram Strait
弗拉姆海峡浮游植物动态与环境的协同演化
  • 批准号:
    NE/Z000300/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OPP-PRF: Deciphering the Role of Phytoplankton Community Composition in Southern Ocean Carbon Fluxes
博士后奖学金:OPP-PRF:破译浮游植物群落组成在南大洋碳通量中的作用
  • 批准号:
    2317998
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Bloom and bust: seasonal cycles of phytoplankton and carbon flux
繁荣与萧条:浮游植物和碳通量的季节性周期
  • 批准号:
    2910180
  • 财政年份:
    2024
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Studentship
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
  • 批准号:
    2318862
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Quantifying the effects of variable light and iron on the nitrate assimilation isotope effect of phytoplankton
合作研究:量化可变光和铁对浮游植物硝酸盐同化同位素效应的影响
  • 批准号:
    2333913
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: On thin ice- implications of shorter winters for the future of freshwater phytoplankton phenology and function
合作研究:MRA:薄冰——较短冬季对淡水浮游植物物候和功能未来的影响
  • 批准号:
    2306896
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Continuing Grant
Collaborative Research: Phylogenetic and Physiological Characterization of Amino Acid Nitrogen Isotopes in Phytoplankton
合作研究:浮游植物氨基酸氮同位素的系统发育和生理学特征
  • 批准号:
    2242041
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Community Based Phytoplankton Observatory for Northwestern Alaska Coastal Waters
合作研究:阿拉斯加西北部沿海水域社区浮游植物观测站
  • 批准号:
    2229121
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Community Based Phytoplankton Observatory for Northwestern Alaska Coastal Waters
合作研究:阿拉斯加西北部沿海水域社区浮游植物观测站
  • 批准号:
    2229122
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Linkages among Sea Ice, Phytoplankton, and Carbon in the Marginal Ice Zone
博士后奖学金:OPP-PRF:边缘冰区海冰、浮游植物和碳之间的联系
  • 批准号:
    2317774
  • 财政年份:
    2023
  • 资助金额:
    $ 7.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了