A world of virus structures: understanding how non-icosahedral capsids are built

病毒结构的世界:了解非二十面体衣壳是如何构建的

基本信息

  • 批准号:
    BB/T004525/1
  • 负责人:
  • 金额:
    $ 78.56万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Viruses are probably the most successful pathogens on earth. They are everywhere, and they infect every other type of organism, including plants, animals (including humans), fungi, bacteria of all types, and even other viruses. Wherever we have looked for them, they have been found. As a result, they are of huge societal importance, impacting directly on our lives because of their effects on human and animal health, agriculture, and thus on food security on a truly global scale. All viruses face a common challenge, in that they must package their genomic information (either DNA or RNA) within a protective container called a capsid, that shields the genome from the external environment, and delivers it intact to a new cell to start a new round of infection. One way in which these capsids are made is to build a highly symmetric container from a single type of protein. However, to do this the single type of protein has to adopt multiple shapes to build a container of the right size - much like the hexagons and pentagons that are needed to make a football. Building the right capsid, and building it perfectly, is a fundamental part of the viral replication cycle, but our understanding of how this 'conformational switching' happens is very poor. One way that it could occur is for the protein to bind to defined sequences within the genomic DNA or RNA; this binding would drive the conformational change. However, this process is poorly understood. In part, this is because for the vast majority of viruses the capsids have the very high symmetry described above, which means that when we solve their structures, symmetry averaging washes out details of any specific interactions between the protein (which is the same in each position) and the DNA or RNA (which is not, because it has to have a unique sequence that encodes the virus' genes). The high symmetry many viruses rely on is therefore tremendously unhelpful when we try to study the molecular mechanisms involved in assembly. In this proposal we want to exploit two hugely exciting recent discoveries in our laboratories, that will allow us to overcome this barrier and discover, for the first time, the cryptic rules that allow these viruses to efficiently self-assemble. We have been working on two different families of virus that are each important pathogens of food and textile crops globally, and thus are major threats to food security and agricultural economies across the developed and developing world; Geminiviruses and Umbraviruses. In each, the virus has evolved a (different) novel innovation that means the capsid has a "non-standard" structure which is no longer quite as symmetric as is normally the case. Remarkably, in the preliminary structure of each which we have solved with 5-fold symmetry (rather than the 60-fold symmetry for an icosahedral virus), we can now see details of DNA (for Geminiviruses) and RNA (for Umbraviruses) bound to the viral coat proteins. This grant application will allow us to solve high resolution structures of these non-standard virus capsids without any symmetry averaging at all. Together with biochemical and bioinformatics experiments, we will uncover the details of genome binding, how this changes protein conformation, and where these features lie within the viral genome. This will (a) provide fascinating new fundamental biological insights that are important in understanding how viruses work, (b) provide a mechanistic understanding that could lead to new ways to prevent them working, and (c) make clear the rules for virus assembly that could allow us to change the way viruses assemble, to make capsids of, for example, different sizes for biotechnology applications.
病毒可能是地球上最成功的病原体。它们无处不在,它们感染其他每种类型的生物,包括植物,动物(包括人),真菌,各种细菌,甚至其他病毒。无论我们在哪里寻找它们,都可以找到它们。结果,它们具有巨大的社会重要性,由于它们对人类和动物健康,农业的影响以及在全球范围内对粮食安全的影响,直接影响了我们的生活。所有病毒都面临着一个普遍的挑战,因为它们必须在称为CAPSID的保护容器中包装其基因组信息(DNA或RNA),从而使基因组免受外部环境的影响,并将其完整地提供给新细胞以开始新的感染。制作这些衣壳的一种方法是从单一类型的蛋白质中构建一个高度对称的容器。但是,要做到这一点,单一类型的蛋白质必须采用多种形状来构建一个适合的容器,就像六角形和五角大车一样,需要制作足球。构建右皮环并完美地构建它是病毒复制周期的基本组成部分,但是我们对这种“构象切换”如何发生的理解非常差。它可能发生的一种方法是蛋白质与基因组DNA或RNA中定义的序列结合。这种结合将驱动构象变化。但是,这个过程对此很了解。在某种程度上,这是因为对于绝大多数病毒,capsids具有上面描述的很高的对称性,这意味着,当我们解决它们的结构时,对称平均会消除蛋白质之间的任何特定相互作用的详细信息(每个位置在每个位置)与DNA或RNA之间(不是相同的)(不是,这不是一个独特的序列,因为它必须具有代码属于Virus'genes的独特序列)。因此,当我们尝试研究组装中涉及的分子机制时,许多病毒依赖的高对称性是无益的。在这项建议中,我们希望利用实验室中的两个令人兴奋的最近发现,这将使我们能够克服这一障碍,并首次发现这些病毒可以有效自我组装的隐秘规则。我们一直在为全球粮食和纺织品作物的各种病原体而努力,因此是对发达国家和发展中国家的粮食安全和农业经济体的主要威胁。双子病毒和伞病病毒。在每种情况下,病毒都进化出一种(不同的)新颖创新,这意味着Capsid具有“非标准”结构,这种结构不再像通常情况一样对称。值得注意的是,在我们已经使用5倍对称性(而不是二十体病毒的60倍对称性)求解的每个初步结构中,我们现在可以看到与病毒蛋白蛋白结合的DNA(用于双子座病毒)和RNA(用于伞状病毒)的细节。该赠款应用将使我们能够解决这些非标准病毒衣壳的高分辨率结构,而无需平均任何对称性。与生化和生物信息学实验一起,我们将发现基因组结合的细节,如何改变蛋白质构象以及这些特征位于病毒基因组中的位置。这将(a)提供引人入胜的新基本生物学见解,这些洞察力对于理解病毒的工作方式很重要,(b)提供了一种机械理解,可以导致新的方法来防止它们工作,并且(c)明确说明病毒组装的规则,这些规则可以使我们可以改变病毒的方式,以使生物技术应用程序不同,以不同的范围。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In vitro functional analysis of gRNA sites regulating assembly of hepatitis B virus.
  • DOI:
    10.1038/s42003-021-02897-2
  • 发表时间:
    2021-12-16
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Patel N;Clark S;Weiß EU;Mata CP;Bohon J;Farquhar ER;Maskell DP;Ranson NA;Twarock R;Stockley PG
  • 通讯作者:
    Stockley PG
Plant-expressed virus-like particles reveal the intricate maturation process of a eukaryotic virus.
  • DOI:
    10.1038/s42003-021-02134-w
  • 发表时间:
    2021-05-24
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Castells-Graells R;Ribeiro JRS;Domitrovic T;Hesketh EL;Scarff CA;Johnson JE;Ranson NA;Lawson DM;Lomonossoff GP
  • 通讯作者:
    Lomonossoff GP
The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion.
  • DOI:
    10.1038/s42003-021-02687-w
  • 发表时间:
    2021-10-06
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Byrne M;Kashyap A;Esquirol L;Ranson N;Sainsbury F
  • 通讯作者:
    Sainsbury F
A Replicating Viral Vector Greatly Enhances Accumulation of Helical Virus-Like Particles in Plants.
  • DOI:
    10.3390/v13050885
  • 发表时间:
    2021-05-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thuenemann EC;Byrne MJ;Peyret H;Saunders K;Castells-Graells R;Ferriol I;Santoni M;Steele JFC;Ranson NA;Avesani L;Lopez-Moya JJ;Lomonossoff GP
  • 通讯作者:
    Lomonossoff GP
CryoEM and stability analysis of virus-like particles of potyvirus and ipomovirus infecting a common host.
  • DOI:
    10.1038/s42003-023-04799-x
  • 发表时间:
    2023-04-19
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Chase, Ornela;Javed, Abid;Byrne, Matthew J.;Thuenemann, Eva C.;Lomonossoff, George P.;Ranson, Neil A.;Lopez-Moya, Juan Jose
  • 通讯作者:
    Lopez-Moya, Juan Jose
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Ranson其他文献

Neil Ranson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Ranson', 18)}}的其他基金

Breaking the Barrier: Mapping protein interactions in the bacterial outer membrane as targets for new antimicrobials
打破障碍:绘制细菌外膜中的蛋白质相互作用作为新抗菌药物的目标
  • 批准号:
    MR/Y012453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
A plasma focused ion beam microscope for Structural Cell Biology at the Astbury Biostructure Laboratory
阿斯特伯里生物结构实验室用于结构细胞生物学的等离子体聚焦离子束显微镜
  • 批准号:
    BB/X019373/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
Delivery and clearance of outer membrane proteins to the bacterial outer membrane
外膜蛋白向细菌外膜的递送和清除
  • 批准号:
    BB/X015653/1
  • 财政年份:
    2023
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
A cryo-capable electron microscope for the Astbury Biostructure Laboratory
阿斯特伯里生物结构实验室的冷冻电子显微镜
  • 批准号:
    BB/W019485/1
  • 财政年份:
    2022
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
Unravelling the tissue-specific geography of protein aggregation in human disease
揭示人类疾病中蛋白质聚集的组织特异性地理
  • 批准号:
    MR/W031515/1
  • 财政年份:
    2022
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
The Structural Biology of Amyloid Aggregation
淀粉样蛋白聚集的结构生物学
  • 批准号:
    MR/T011149/1
  • 财政年份:
    2020
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
Exploiting the power of heterologous expression in plants to discover new virus structure.
利用植物异源表达的力量来发现新的病毒结构。
  • 批准号:
    BB/R00160X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
Untangling the processes of replication in and encapsidation in Picornavirales
解开小核糖核酸病毒目的复制和衣壳化过程
  • 批准号:
    BB/L021250/1
  • 财政年份:
    2014
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
Defining the molecular pathway for yeast prion fibril assembly using cryo-electron microscopy
使用冷冻电子显微镜定义酵母朊病毒原纤维组装的分子途径
  • 批准号:
    BB/E01433X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant

相似国自然基金

人和小鼠中新冠病毒RBD的免疫原性表位及其互作抗体的表征和结构组学规律的比较研究
  • 批准号:
    32371262
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
靶向冠状病毒主蛋白酶抑制剂药物分子的自适应结构描述与精准设计合成
  • 批准号:
    22373062
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
单纯疱疹病毒DNA复制起始复合物的动力学与结构研究
  • 批准号:
    32371286
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
寨卡病毒非结构蛋白NS5增强II型干扰素信号传导的机制探究
  • 批准号:
    32300135
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A novel protein export chaperone of Mycobacterium tuberculosis
结核分枝杆菌的新型蛋白质输出伴侣
  • 批准号:
    9892319
  • 财政年份:
    2020
  • 资助金额:
    $ 78.56万
  • 项目类别:
Live-attenuated Rift Valley fever vaccines: comparative mechanisms of trans-placental transmission and vaccine efficacy for developing fetuses
裂谷热减毒活疫苗:经胎盘传播的比较机制和疫苗对发育中胎儿的功效
  • 批准号:
    10673312
  • 财政年份:
    2020
  • 资助金额:
    $ 78.56万
  • 项目类别:
Live-attenuated Rift Valley fever vaccines: comparative mechanisms of trans-placental transmission and vaccine efficacy for developing fetuses
裂谷热减毒活疫苗:经胎盘传播的比较机制和疫苗对发育中胎儿的功效
  • 批准号:
    10113532
  • 财政年份:
    2020
  • 资助金额:
    $ 78.56万
  • 项目类别:
A world of virus structures: understanding how non-icosahedral capsids are built
病毒结构的世界:了解非二十面体衣壳是如何构建的
  • 批准号:
    BB/T004703/1
  • 财政年份:
    2020
  • 资助金额:
    $ 78.56万
  • 项目类别:
    Research Grant
The role of repressive nuclear bodies in latent herpes simplex virus infection
抑制核体在潜伏单纯疱疹病毒感染中的作用
  • 批准号:
    10192728
  • 财政年份:
    2019
  • 资助金额:
    $ 78.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了