Novel mechanisms of regulatory T cell mediated suppression: a fundamental role for VPS34
调节性 T 细胞介导的抑制的新机制:VPS34 的基本作用
基本信息
- 批准号:BB/T007826/1
- 负责人:
- 金额:$ 81.35万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The immune system provides us with life-long protection against infectious agents. Specialised cells called T cells can both orchestrate the activities of other immune cells and kill infected cells directly. Remarkably, a small subset of T cells, called regulatory T cells (Tregs) are required to keep all the other T cells (conventional T cells, or Tcon) in check. Although Tregs comprise only about 1% of all the white blood cells, we cannot survive without them. Hence, children that lack a functional version of a gene called FOXP3 which is essential for Tregs do not live beyond two years, at which point their developing immune system turns against them, leading to a lethal syndrome known as IPEX. Mice that lack functional FOXP3 also die between 6 weeks because of an unrestrained immune attack against their organs and microorganisms in their skin and gut.What remains a puzzle is how such a small immune cell population can have such enormous importance for maintaining health. How do Tregs control the activity of the much more abundant Tcon? We have discovered that an enzyme called VPS34, originally identified in yeast, is essential for the function of Tregs. This is an important distinction from Foxp3, which is required for the development of Tregs. Therefore, FOXP3-deficient mice lack completely Tregs, whereas if we deleted the gene encoding VPS34, and that only in Tregs, we find normal numbers of Tregs in immune-related organs, but the mice nonetheless do not survive beyond 4-6 weeks. Normally, mice can live for 2-3 years. We therefore hypothesise that by gaining a better understanding of what VPS34 does in Tregs, we can also learn more about how Tregs work and answer the question about which function is absolutely essential for their ability to restrain Tcon.We will use several different experimental approaches to address this question. Most of the work will take advantage of a genetically modified mouse model in which the gene for VPS34 is deleted only in Tregs. Once mechanism through which Tregs are thought to work is by consuming certain stimulatory protein molecules so that they become unavailable for Tcon. We have already established that VPS34-deficient Tregs are still able to bind these proteins and internalise them. We will now follow what happens to these proteins once they have been transported inside the Tregs. Normally, they would be digested and degraded, but we suspect that this process is disrupted in Tregs lacking VPS34.We will also use mice in which only about half the Tregs lack VPS34. Such mice live a normal life span. We will challenge such mice by either implanting tumour cells under the skin or by infecting them with bacteria. This will stimulate both Tcon and Tregs to multiply and change from a resting state to a highly activated state. We can then compare Treg with or without VPS34 in the same mouse and ask: does whether lack of VPS34 interfere with the ability of Tregs to be activated and perhaps reach their full immune suppressive potential. Each T cell has about 6000-8000 different kinds of proteins. We have been able to measure these proteins in normal and VPS34-deficient Tregs. We can therefore determine whether without VPS34, you end up with more of some proteins, and less of others. Many of the proteins that are altered in absence of VPS34 are involved in cellular metabolism (i.e. processes that regulate how Tregs take up and use nutrients). We will determine if some of these metabolic activities affect Treg function and suppression. We believe that these complementary approaches will lead us to discover novel aspects of Treg function that might one day can be exploited for therapeutic purposes, for instance by designing drugs that either enhance or inhibit Treg function, and that could be used in the context of cancer or autoimmune diseases.
免疫系统为我们提供终身保护,使我们免受传染病的侵害。被称为T细胞的特殊细胞既能协调其他免疫细胞的活动,又能直接杀死被感染的细胞。值得注意的是,一小部分T细胞,称为调节性T细胞(Tregs),需要控制所有其他T细胞(传统T细胞,或Tcon)。虽然Tregs只占所有白细胞的1%左右,但没有它们我们就无法生存。因此,缺乏对Tregs至关重要的FOXP3基因的功能版本的儿童活不过两年,届时他们正在发育的免疫系统会开始对抗他们,导致一种名为IPEX的致命综合症。缺乏功能性FOXP3的小鼠也会在6周内死亡,因为它们的器官和皮肤和肠道中的微生物会受到不受限制的免疫攻击。如此少的免疫细胞群为何对维持健康具有如此巨大的重要性,这仍是一个谜。treg如何控制更丰富的Tcon的活动?我们发现一种叫做VPS34的酶,最初在酵母中发现,对Tregs的功能至关重要。这是与Foxp3的一个重要区别,Foxp3是treg发育所必需的。因此,foxp3缺陷小鼠完全缺乏Tregs,而如果我们删除编码VPS34的基因,并且只在Tregs中,我们发现免疫相关器官中有正常数量的Tregs,但小鼠仍然不能存活超过4-6周。正常情况下,老鼠可以活2-3年。因此,我们假设,通过更好地了解VPS34在Tregs中的作用,我们也可以更多地了解Tregs是如何工作的,并回答哪个功能对它们抑制Tcon的能力是绝对必要的。我们将使用几种不同的实验方法来解决这个问题。大部分工作将利用一种转基因小鼠模型,其中VPS34基因仅在treg中被删除。Tregs被认为起作用的一种机制是通过消耗某些刺激性蛋白质分子,使它们对Tcon无效。我们已经确定,缺乏vps34的treg仍然能够结合这些蛋白质并将其内化。我们现在将跟踪这些蛋白质在treg内部运输后发生的变化。正常情况下,它们会被消化和降解,但我们怀疑这一过程在缺乏VPS34的treg中被破坏。我们还将使用只有大约一半treg缺乏VPS34的小鼠。这样的老鼠寿命正常。我们将在这些老鼠的皮肤下植入肿瘤细胞,或者用细菌感染它们。这将刺激Tcon和Tregs的繁殖,并从静止状态转变为高度激活状态。然后,我们可以在同一只小鼠中比较有或没有VPS34的Treg,并问:缺乏VPS34是否会干扰Treg被激活的能力,并可能达到其全部免疫抑制潜力。每个T细胞大约有6000-8000种不同的蛋白质。我们已经能够在正常和缺乏vps34的treg中测量这些蛋白质。因此,我们可以确定,如果没有VPS34,你最终是否会有更多的某些蛋白质,而更少的其他蛋白质。在缺乏VPS34的情况下,许多被改变的蛋白质与细胞代谢有关(即调节treg如何吸收和利用营养物质的过程)。我们将确定这些代谢活动是否会影响Treg的功能和抑制。我们相信,这些互补的方法将引导我们发现Treg功能的新方面,也许有一天可以用于治疗目的,例如通过设计增强或抑制Treg功能的药物,可以用于癌症或自身免疫性疾病。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A CRISPR screen targeting PI3K effectors identifies RASA3 as a negative regulator of LFA-1-mediated adhesion in T cells.
- DOI:10.1126/scisignal.abl9169
- 发表时间:2022-07-19
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
BACH2 restricts NK cell maturation and function, limiting immunity to cancer metastasis.
- DOI:10.1084/jem.20211476
- 发表时间:2022-12-05
- 期刊:
- 影响因子:15.3
- 作者:Imianowski, Charlotte J.;Whiteside, Sarah K.;Lozano, Teresa;Evans, Alexander C.;Benson, Jayme D.;Courreges, Christina J. F.;Sadiyah, Firas;Lau, Colleen M.;Zandhuis, Nordin D.;Grant, Francis M.;Schuijs, Martijn J.;Vardaka, Panagiota;Kuo, Paula;Soilleux, Elizabeth J.;Yang, Jie;Sun, Joseph C.;Kurosaki, Tomohiro;Okkenhaug, Klaus;Halim, Timotheus Y. F.;Roychoudhuri, Rahul
- 通讯作者:Roychoudhuri, Rahul
Lack of phosphatidylinositol 3-kinase VPS34 in regulatory T cells leads to a fatal lymphoproliferative disorder without affecting their development
调节性 T 细胞中缺乏磷脂酰肌醇 3-激酶 VPS34 会导致致命的淋巴增殖性疾病,但不会影响其发育
- DOI:10.1101/2024.01.08.574346
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Courreges C
- 通讯作者:Courreges C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Klaus Okkenhaug其他文献
Perturbing local steroidogenesis to improve breast cancer immunity
扰乱局部甾体生成以改善乳腺癌免疫力
- DOI:
10.1038/s41467-025-59356-3 - 发表时间:
2025-04-26 - 期刊:
- 影响因子:15.700
- 作者:
Qiuchen Zhao;Jhuma Pramanik;Yongjin Lu;Natalie Z. M. Homer;Charlotte J. Imianowski;Baojie Zhang;Muhammad Iqbal;Sanu Korumadathil Shaji;Andrew Conway Morris;Rahul Roychoudhuri;Klaus Okkenhaug;Pengfei Qiu;Bidesh Mahata - 通讯作者:
Bidesh Mahata
Drug repurposing reveals posaconazole as a CYP11A1 inhibitor enhancing anti-tumor immunity
药物再利用显示泊沙康唑是一种CYP11A1抑制剂,可增强抗肿瘤免疫力
- DOI:
10.1016/j.isci.2025.112488 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:4.100
- 作者:
Jhuma Pramanik;Sanu Korumadathil Shaji;Megan Zaman;Bethany Brown;Baojie Zhang;Yumi Yamashita-Kanemaru;Natalie Z.M. Homer;Hosni A.M. Hussein;Qiuchen Zhao;Klaus Okkenhaug;Rahul Roychoudhuri;Abhik Mukhopadhyay;Bidesh Mahata - 通讯作者:
Bidesh Mahata
Idelalisib—targeting PI3Kδ in patients with B-cell malignancies
依达拉奉——针对 B 细胞恶性肿瘤患者的 PI3Kδ
- DOI:
10.1038/nrclinonc.2014.42 - 发表时间:
2014-03-18 - 期刊:
- 影响因子:82.200
- 作者:
Jan A. Burger;Klaus Okkenhaug - 通讯作者:
Klaus Okkenhaug
Aspirin prevents metastasis by limiting platelet TXA2 suppression of T cell immunity
阿司匹林通过限制血小板 TXA2 对 T 细胞免疫的抑制来预防转移。
- DOI:
10.1038/s41586-025-08626-7 - 发表时间:
2025-03-05 - 期刊:
- 影响因子:48.500
- 作者:
Jie Yang;Yumi Yamashita-Kanemaru;Benjamin I. Morris;Annalisa Contursi;Daniel Trajkovski;Jingru Xu;Ilinca Patrascan;Jayme Benson;Alexander C. Evans;Alberto G. Conti;Aws Al-Deka;Layla Dahmani;Adnan Avdic-Belltheus;Baojie Zhang;Hanneke Okkenhaug;Sarah K. Whiteside;Charlotte J. Imianowski;Alexander J. Wesolowski;Louise V. Webb;Simone Puccio;Stefania Tacconelli;Annalisa Bruno;Sara Di Berardino;Alessandra De Michele;Heidi C. E. Welch;I-Shing Yu;Shu-Wha Lin;Suman Mitra;Enrico Lugli;Louise van der Weyden;Klaus Okkenhaug;Kourosh Saeb-Parsy;Paola Patrignani;David J. Adams;Rahul Roychoudhuri - 通讯作者:
Rahul Roychoudhuri
Mind the GAP: RASA2 and RASA3 GTPase-activating proteins as gatekeepers of T cell activation and adhesion
注意差距:RASA2 和 RASA3 GTP 酶激活蛋白作为 T 细胞活化和黏附的守门人
- DOI:
10.1016/j.it.2023.09.002 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:13.900
- 作者:
Kristoffer H. Johansen;Dominic P. Golec;Klaus Okkenhaug;Pamela L. Schwartzberg - 通讯作者:
Pamela L. Schwartzberg
Klaus Okkenhaug的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Klaus Okkenhaug', 18)}}的其他基金
Enhancing T cell immunity to cancer metastasis
增强T细胞对癌症转移的免疫力
- 批准号:
MR/Y013301/1 - 财政年份:2024
- 资助金额:
$ 81.35万 - 项目类别:
Research Grant
PI3K signalling at the immune synapse asymmetric division and immunological memory.
免疫突触不对称分裂和免疫记忆的 PI3K 信号传导。
- 批准号:
BB/F015461/1 - 财政年份:2008
- 资助金额:
$ 81.35万 - 项目类别:
Research Grant
PI3K signalling in regulatory T cells.
调节性 T 细胞中的 PI3K 信号传导。
- 批准号:
BB/E009867/1 - 财政年份:2007
- 资助金额:
$ 81.35万 - 项目类别:
Research Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Erk1/2/CREB/BDNF通路在CSF1R相关性白质脑病致病机制中的作用研究
- 批准号:82371255
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Foxc2介导Syap1/Akt信号通路调控破骨/成骨细胞分化促进颞下颌关节骨关节炎的机制研究
- 批准号:82370979
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
- 批准号:82370981
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
Idh3a作为线粒体代谢—表观遗传检查点调控产热脂肪功能的机制研究
- 批准号:82370851
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
- 批准号:82372015
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
小脑浦肯野细胞突触异常在特发性震颤中的作用机制及靶向干预研究
- 批准号:82371248
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
声致离子电流促进小胶质细胞M2极化阻断再生神经瘢痕退变免疫机制
- 批准号:82371973
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
GREB1突变介导雌激素受体信号通路导致深部浸润型子宫内膜异位症的分子遗传机制研究
- 批准号:82371652
- 批准年份:2023
- 资助金额:45.00 万元
- 项目类别:面上项目
相似海外基金
Cancer-based discovery of novel mechanisms of chromatin control
基于癌症的染色质控制新机制的发现
- 批准号:
10660680 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Novel pro-survival mechanisms of PIM2 in multiple myeloma
PIM2 在多发性骨髓瘤中的新的促生存机制
- 批准号:
10668651 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Identifying novel resistance mechanisms in non-muscle invasive bladder cancer treated with Bacillus Calmette-Guerin (BCG)
识别卡介苗 (BCG) 治疗的非肌层浸润性膀胱癌的新耐药机制
- 批准号:
10742368 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Novel regulatory mechanisms controlling hepatic apoB-Lp lipid loading and secretion
控制肝脏apoB-Lp脂质负荷和分泌的新调控机制
- 批准号:
10628991 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
A Novel Synthetic Biology-Derived Microbiome Therapeutic to Treat Viral-Induced Acute Respiratory Distress Syndrome (ARDS)
一种新型合成生物学衍生的微生物疗法,可治疗病毒引起的急性呼吸窘迫综合征(ARDS)
- 批准号:
10601865 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
CAREER: De novo emergence of novel regulatory mechanisms that determine carbon and nitrogen resource allocations in plants
职业生涯:决定植物碳氮资源分配的新型调控机制从头出现
- 批准号:
2238942 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Continuing Grant
Novel Mechanisms of Oxidative Stress Response in Heart Failure
心力衰竭氧化应激反应的新机制
- 批准号:
10930191 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Identification of regulatory mechanisms operating in rare pathogenic astrocyte subsets in multiple sclerosis with a novel genomic technology
利用新型基因组技术鉴定多发性硬化症中罕见致病性星形胶质细胞亚群的调节机制
- 批准号:
10737509 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Uncovering novel mechanisms and potential therapeutic targets for IgA vasculitis through GWAS and systems-level analysis of regulatory networks.
通过 GWAS 和调节网络的系统级分析揭示 IgA 血管炎的新机制和潜在治疗靶点。
- 批准号:
10723651 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别:
Novel regulatory mechanisms and agonists of STING
STING 的新颖调控机制和激动剂
- 批准号:
10655761 - 财政年份:2023
- 资助金额:
$ 81.35万 - 项目类别: