Learn From The Best: training AI using biological expert attention
向最优秀的人学习:利用生物专家的注意力训练人工智能
基本信息
- 批准号:BB/T012129/1
- 负责人:
- 金额:$ 17.82万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial intelligence (AI) is having a massive impact on many disciplines, including biological science. Its power is impressive and its adoption will change the nature of research, but at the moment the way it is developed has severe practical limitations. Despite the recent developments in machine learning and AI, humans still possess an unrivalled ability to just look at a picture, and understand exactly what is going on. A human expert is able to look at a picture of a plant with disease symptoms, for example, and immediately quantify the severity of the infection. AI promises to revolutionise bioimage analysis, but as of today an expert human will outperform an AI given only a small set of images to learn from.One important difference between humans and modern AI is the way we are taught to perform a task. A human will learn which parts of an image are important, then scan the images to find these areas before coming to reach a scoring decision. AI is typically trained using labeled data, where only the output label matters. An AI does not know which parts of the image are important, or where it should look. This often leads to poor performance when the task is challenging, or when only small datasets are available. To achieve the impressive results as has been documented in the news, current AI must use very laborious and inefficient training processes, which are often impractical in a real world scientific setting.This project will develop a new, smarter way to train artificial intelligence methods, using similar mechanisms to how human experts make decisions. To do this, our AI will study how human experts approach the same problems by using gaze tracking to see where an expert looked, and when. The result will be AI methods that learn to look in the right places, and so are able to take more difficult scoring decisions with less training data than they would previously need. Put simply, we believe that an AI that is able to look in the correct places before making a decision will be more effective than one that attempts to simply make a decision without knowing where to look.In this project we will first develop the hardware and software approaches necessary to capture expert human gaze during image scoring. This raw gaze information will be processed using novel algorithms, and fed into a new deep learning AI system along with the labelled scores, guiding it towards more informed decision making. The AI will examine where in the images human experts looked when providing an image label, and will learn to look in those same places when it replicates the same task. This is a new approach to training AI. Finally, we will build a new type of deep neural network AI system that can be guided by this additional information, knowing where to look, and what to do.We will demonstrate this work on important datasets of plant disease, but we also believe this approach will massively reduce the time required to annotate datasets across all fields of life and biomedical science, and at the same time produce even more impressive and accurate AI results. This could represent a step-change in the adoption and ease of use of AI tools in the world of bioscience, allowing for more efficient training on smaller image datasets.
人工智能(AI)正在对包括生物科学在内的许多学科产生巨大影响。它的力量令人印象深刻,它的采用将改变研究的性质,但目前它的开发方式存在严重的实际局限性。尽管机器学习和人工智能最近取得了发展,但人类仍然拥有无与伦比的能力,只需看一张图片,就能准确地了解发生了什么。例如,人类专家能够看到一张有疾病症状的植物图片,并立即量化感染的严重程度。人工智能有望彻底改变生物图像分析,但到目前为止,只要有一小部分图像可供学习,专家人类的表现就会优于人工智能。人类和现代人工智能之间的一个重要区别是,我们被教导执行任务的方式。人类将学习图像的哪些部分是重要的,然后扫描图像以找到这些区域,然后再做出评分决定。人工智能通常使用标记数据进行训练,其中只有输出标签重要。人工智能不知道图像的哪些部分很重要,也不知道它应该看在哪里。当任务具有挑战性或只有小数据集可用时,这通常会导致性能低下。为了达到新闻中所记载的令人印象深刻的结果,当前的人工智能必须使用非常费力和低效的训练过程,这在真实的世界科学环境中通常是不切实际的。该项目将开发一种新的,更智能的方法来训练人工智能方法,使用类似于人类专家如何做出决策的机制。为了做到这一点,我们的人工智能将研究人类专家如何通过使用视线跟踪来了解专家在何时何地看过。其结果将是人工智能方法学会在正确的地方寻找,因此能够用比以前更少的训练数据做出更困难的评分决定。简而言之,我们认为,能够在做出决定之前查看正确位置的AI将比那些试图在不知道该查看位置的情况下简单地做出决定的AI更有效。在这个项目中,我们将首先开发在图像评分过程中捕获专家人类视线所需的硬件和软件方法。这些原始的凝视信息将使用新的算法进行处理,并与标记的分数一起沿着到一个新的深度学习AI系统中,引导它做出更明智的决策。人工智能将检查人类专家在提供图像标签时查看的图像位置,并在复制相同任务时学习查看相同的位置。这是一种训练AI的新方法。最后,我们将构建一种新型的深度神经网络人工智能系统,它可以被这些额外的信息所引导,知道去哪里看,做什么。我们将在植物疾病的重要数据集上展示这项工作,但我们也相信这种方法将大大减少注释生命和生物医学科学所有领域的数据集所需的时间,同时产生更令人印象深刻和准确的AI结果。这可能代表了生物科学领域人工智能工具的采用和易用性的一步变化,允许在较小的图像数据集上进行更有效的训练。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Addressing Multiple Salient Object Detection via Dual-Space Long-Range Dependencies
- DOI:10.1016/j.cviu.2023.103776
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Bowen Deng;A. French;Michael P. Pound
- 通讯作者:Bowen Deng;A. French;Michael P. Pound
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Pound其他文献
Application of RESNET50 Convolution Neural Network for the Extraction of Optical Parameters in Scattering Media
RESNET50卷积神经网络在散射介质光学参数提取中的应用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bowen Deng;Yihan Zhang;Andrew Parkes;Alexander Bentley;Amanda J. Wright;Michael Pound;Michael Somekh - 通讯作者:
Michael Somekh
Michael Pound的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Pound', 18)}}的其他基金
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Research Grant
LeMuR: Plant Root Phenotyping via Learned Multi-resolution Image Segmentation
LeMuR:通过学习的多分辨率图像分割进行植物根表型分析
- 批准号:
BB/P026834/1 - 财政年份:2017
- 资助金额:
$ 17.82万 - 项目类别:
Research Grant
相似国自然基金
BEST3经MEKK2/3-LATS1/2-YAP/TAZ信号轴阻断子宫内膜基质
细胞自噬在宫腔粘连中的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Clic1 与 Best1 氯离子通道协同调节视神经再生及调
控机制
- 批准号:2024JJ5471
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
BEST4作为Notch2-Hes4轴的关键靶分子通过拮抗STAT3二聚化逆转EMT抑制结直肠癌转移的作用和机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Best1通道调控缺血性脑卒中的兴奋-抑制平衡
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
Best1通道在脑缺血急性损伤和功能修复中的特殊双相作用
- 批准号:82171293
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
中国医患治疗偏好研究:基于Best-worst标度法的探索
- 批准号:71804122
- 批准年份:2018
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
REU Site: Interdisciplinary Biological Engineering and Science Training (I-BEST)
REU 网站:跨学科生物工程和科学培训 (I-BEST)
- 批准号:
2349757 - 财政年份:2024
- 资助金额:
$ 17.82万 - 项目类别:
Standard Grant
Dental-Biomedical Engineering Scholars Training (D-Best) Program
牙科生物医学工程学者培训(D-Best)计划
- 批准号:
10845831 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Building and Implementing Best Practices for Buprenorphine Initiation in the Setting of Fentanyl Use
在芬太尼使用情况下建立和实施丁丙诺啡起始的最佳实践
- 批准号:
10721763 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Antibodies to Viral Vectors in Gene Therapy Research: Seeking Best Practices for Sponsor Policies and Communications
基因治疗研究中的病毒载体抗体:寻求赞助商政策和沟通的最佳实践
- 批准号:
10683623 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Beginning and Early Stage Translational (BEST) Researchers
初级和早期转化 (BEST) 研究人员
- 批准号:
10622203 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Beacon Sensors and Telerehabilitation to Assess and Improve use of Devices (BeST-AID) for Low Vision
用于评估和改善低视力设备使用的信标传感器和远程康复 (BeST-AID)
- 批准号:
10736559 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
A child's best friend: Behavioral, neural, and endocrinological mechanisms of longitudinal social bond formation and stress buffering effects in children and pet dogs
孩子最好的朋友:儿童和宠物狗纵向社会纽带形成和压力缓冲效应的行为、神经和内分泌机制
- 批准号:
10607449 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Dental-Biomedical Engineering Scholars Training (D-BEST) Program
牙科生物医学工程学者培训(D-BEST)计划
- 批准号:
10714037 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Improving pain management and opioid safety through a systemwide, data driven evaluation of the CDC opioid prescribing guideline best practices and the use of Clinical Decision Support
通过对 CDC 阿片类药物处方指南最佳实践进行全系统、数据驱动的评估并使用临床决策支持,改善疼痛管理和阿片类药物安全
- 批准号:
10588405 - 财政年份:2022
- 资助金额:
$ 17.82万 - 项目类别:
LA’s Biostatistics and Data Science Training Program (LA’s BeST)
洛杉矶生物统计学和数据科学培训计划 (LAâs BeST)
- 批准号:
10368449 - 财政年份:2022
- 资助金额:
$ 17.82万 - 项目类别: