Distribution and modulation of dynamic sodium pumps in a spinal motor network
脊髓运动网络中动态钠泵的分布和调制
基本信息
- 批准号:BB/T015705/1
- 负责人:
- 金额:$ 74.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the most prevalent and important proteins in the human body is the sodium pump. It is present in high numbers in every cell across all tissues of the body, even in the fertilized egg from which we develop. Moreover, the same protein is also found in every species of the animal kingdom where it has the same structure and performs the same function as it does in humans. What do sodium pumps do that is so important, and has been remained almost unchanged after a billion years of evolution? Sodium pumps control the amounts of two key ions in the cells of the body, sodium and potassium. The pumping role involves moving 3 sodium ions out for 2 potassium ions in to cells with each pump cycle. This action is repeated up to 200 times per second, and there are millions of pumps in each cell! The end result is that the outside of cells have high sodium and the inside high potassium concentrations, a situation crucial for the healthy actions of the heart and blood vessels, the kidneys and the nerve cells of the brain and spinal cord. Each pump cycle consumes energy and because of the prevalence of sodium pumps and the fact that they must always be active, they account for a staggering 50% of our energy use.A measure of how much we rely on sodium pumps is what happens when they malfunction or their expression is altered, for example, in heart disease, diabetes and motor neuron disease. We are still trying to understand the role of sodium pumps in these diseases and find new drugs to help alleviate the symptoms, but this goal is severely hindered by the fact that we still do not understand how they work. This is especially true in the brain and spinal cord and it is here that our project will seek to make new scientific discoveries on how sodium pumps actually work in nerve cells and control our behaviours.The human brain is probably the most complex structure in the Universe so we will use a much simpler system to explore the role of sodium pumps, one in which there is a very real chance of answering the important, unresolved questions about these pumps. The small Xenopus frog tadpole has the most completely understood spinal cord network of all vertebrates. All of the nerve cells have been described in detail and also how they connect together to control the animals swimming movements. Seven years ago, we discovered a particular type of sodium pump found only in some neurons of the spinal cord. It is normally silent and only begins pumping ions when the tadpole swims fast. When the activity stops, the increased pumping reduces the ability of the spinal cord to produce another bout of swimming so the pumps produce a memory trace of past activity. Our experiments aim to find out what makes these pumps different to the others by testing our hypothesis that they have a specialised "alpha 3" version of the protein subunit that can "sense" when the tadpole is swimming. We also recently discovered that the pump action can be modulated by certain hormones and neurotransmitters, such as serotonin and dopamine, and this affects the memory system of the spinal swimming circuit. We want to learn more about this because it is relevant to the way that all animals control their movements during locomotion. Although simpler, the tadpole spinal cord is still extremely complex, but the circuit controlling its movements is similar in organisation to that found in mammals. To help validate our ideas and come up with new ones we will also simulate the circuit in a computer and add in the special alpha 3 sodium pumps. This work is timely and important because the gene that makes alpha 3 pumps (called ATP1A3) is present in both humans and young tadpoles. Unfortunately, mutations in alpha 3 pumps are linked with motor neuron disease and a form of Parkinson's syndrome. Our project has the potential to break important new ground in sodium pump research at a time when the field is being revolutionised and fuel future drug developments.
人体中最普遍和最重要的蛋白质之一是钠泵。它大量存在于身体所有组织的每个细胞中,甚至存在于我们发育的受精卵中。此外,同样的蛋白质也存在于动物界的每一种物种中,它具有与人类相同的结构和功能。钠泵的作用是什么,如此重要,并且在10亿年的进化后几乎没有改变?钠泵控制着身体细胞中钠和钾两种关键离子的数量。泵送的作用包括在每个泵送循环中将3个钠离子移出,将2个钾离子移入细胞。这个动作每秒重复多达200次,每个细胞中有数百万个泵!最终的结果是,细胞的外部有高钠浓度,而内部有高钾浓度,这种情况对心脏和血管、肾脏、大脑和脊髓的神经细胞的健康活动至关重要。每个泵循环都消耗能量,由于钠泵的普及以及它们必须始终处于活动状态的事实,它们占我们能源消耗的惊人的50%。衡量我们对钠泵依赖程度的一个指标是,当它们出现故障或表达改变时,比如在心脏病、糖尿病和运动神经元疾病中,会发生什么。我们仍在努力了解钠泵在这些疾病中的作用,并寻找新的药物来帮助减轻症状,但我们仍然不了解它们的工作原理,这一目标受到严重阻碍。在大脑和脊髓中尤其如此,正是在这里,我们的项目将寻求在钠泵如何在神经细胞中实际工作并控制我们的行为方面取得新的科学发现。人类大脑可能是宇宙中最复杂的结构,所以我们将使用一个简单得多的系统来探索钠泵的作用,在这个系统中,有一个非常真实的机会来回答关于这些泵的重要的、未解决的问题。小爪蟾蝌蚪拥有所有脊椎动物中最完整的脊髓网络。所有的神经细胞都被详细描述了,以及它们是如何连接在一起来控制动物的游泳运动的。七年前,我们发现了一种特殊的钠泵,这种钠泵只存在于脊髓的一些神经元中。它通常是沉默的,只有当蝌蚪游得快时才开始泵出离子。当活动停止时,增加的泵送减少了脊髓产生另一轮游泳的能力,因此泵送产生了过去活动的记忆痕迹。我们的实验旨在通过验证我们的假设,即蝌蚪有一个特殊的“α 3”版本的蛋白质亚基,可以“感知”蝌蚪在游泳时,找出这些泵与其他泵的不同之处。我们最近还发现,泵的作用可以被某些激素和神经递质调节,比如血清素和多巴胺,这影响了脊髓游泳回路的记忆系统。我们想要更多地了解这一点,因为这与所有动物在运动过程中控制运动的方式有关。虽然比较简单,但蝌蚪的脊髓仍然非常复杂,但控制其运动的回路在组织上与哺乳动物相似。为了帮助验证我们的想法并提出新的想法,我们还将在计算机中模拟电路并添加特殊的α 3钠泵。这项研究是及时而重要的,因为制造α 3泵的基因(称为ATP1A3)在人类和小蝌蚪中都存在。不幸的是,α 3泵的突变与运动神经元疾病和一种帕金森综合症有关。我们的项目有可能在钠泵研究领域开辟重要的新领域,这一领域正在发生革命性的变化,并为未来的药物开发提供动力。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bimodal modulation of short-term motor memory via dynamic sodium pumps in a vertebrate spinal cord.
- DOI:10.1016/j.cub.2022.01.012
- 发表时间:2022-03-14
- 期刊:
- 影响因子:9.2
- 作者:Hachoumi, Lamia;Rensner, Rebecca;Richmond, Claire;Picton, Laurence;Zhang, HongYan;Sillar, Keith T.
- 通讯作者:Sillar, Keith T.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Sillar其他文献
Keith Sillar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Sillar', 18)}}的其他基金
The role of the descending dopaminergic projection in spinal development and regeneration
多巴胺能下降投射在脊柱发育和再生中的作用
- 批准号:
BB/L021900/1 - 财政年份:2014
- 资助金额:
$ 74.39万 - 项目类别:
Research Grant
Nitric oxide modulation of locomotor control networks in the spinal cord and brainstem of a model vertebrate
一氧化氮对模型脊椎动物脊髓和脑干运动控制网络的调节
- 批准号:
BB/F015488/1 - 财政年份:2008
- 资助金额:
$ 74.39万 - 项目类别:
Research Grant
相似国自然基金
流体力学方程组中若干奇异极限问题的研究
- 批准号:11901349
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
下一代无线通信系统自适应调制技术及跨层设计研究
- 批准号:60802033
- 批准年份:2008
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optical fiber rangefinder dynamically updating resolution and dynamic range by optical frequency modulation
光纤测距仪通过光学频率调制动态更新分辨率和动态范围
- 批准号:
23K13342 - 财政年份:2023
- 资助金额:
$ 74.39万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamic Evaluation of Neural Mechanisms for Affective Touch: Pathways for Touch-induced Pleasantness and Pain Modulation
情感触摸神经机制的动态评估:触摸引起的愉悦感和疼痛调节的途径
- 批准号:
10660199 - 财政年份:2023
- 资助金额:
$ 74.39万 - 项目类别:
Modeling Dynamic Immune Cell Modulation in a 3-D Tissue Engineered Platform to Enhance Patient-specific Immunotherapy for Lung Cancer
在 3D 组织工程平台中模拟动态免疫细胞调节,以增强肺癌患者特异性免疫治疗
- 批准号:
10518637 - 财政年份:2022
- 资助金额:
$ 74.39万 - 项目类别:
Modeling Dynamic Immune Cell Modulation in a 3-D Tissue Engineered Platform to Enhance Patient-specific Immunotherapy for Lung Cancer
在 3D 组织工程平台中模拟动态免疫细胞调节,以增强肺癌患者特异性免疫治疗
- 批准号:
10672244 - 财政年份:2022
- 资助金额:
$ 74.39万 - 项目类别:
Machine learning approaches for multi-organ neuronal network mapping and modulation
用于多器官神经元网络映射和调制的机器学习方法
- 批准号:
10746766 - 财政年份:2022
- 资助金额:
$ 74.39万 - 项目类别:
Dynamic Spatio-Temporal Modulation of Light by Phononic Architecture (DYNAMO)
声子架构对光的动态时空调制 (DYNAMO)
- 批准号:
10033143 - 财政年份:2022
- 资助金额:
$ 74.39万 - 项目类别:
EU-Funded
Unraveling the PTEN Interactome: Modeling Structural and Functional Dynamic Network Architecture for Therapeutic Modulation in Cancer and Autism
揭开 PTEN 相互作用组:为癌症和自闭症治疗调节的结构和功能动态网络架构建模
- 批准号:
10439873 - 财政年份:2021
- 资助金额:
$ 74.39万 - 项目类别:
Dynamic tissue-specific modulation of redox stress using chemogenetics
利用化学遗传学对氧化还原应激进行动态组织特异性调节
- 批准号:
10393690 - 财政年份:2021
- 资助金额:
$ 74.39万 - 项目类别:
Amplitude modulation processing and perception in dynamic, multisource listening environments
动态多源聆听环境中的幅度调制处理和感知
- 批准号:
10308957 - 财政年份:2021
- 资助金额:
$ 74.39万 - 项目类别:
Amygdala modulation of state-dependent dynamic threat appraisal and food approach behaviour
杏仁核对状态依赖的动态威胁评估和食物接近行为的调节
- 批准号:
457527 - 财政年份:2021
- 资助金额:
$ 74.39万 - 项目类别:
Studentship Programs