Dissecting the coupling of cell polarity and the stem cell cycle by chemical genetics

通过化学遗传学剖析细胞极性与干细胞周期的耦合

基本信息

  • 批准号:
    BB/V001353/1
  • 负责人:
  • 金额:
    $ 54.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

It has become clear that the correct function of the stem cells in the tissues of our body are intimately linked to the risk of those tissues to develop malignancies. In some tissues stem cells have been identified as the cell-of-origin of cancer. It is therefore important to reveal the mechanisms that protect stem cells from being driven into aberrant proliferation to be able to prevent, control or minimize the impact if they malfunction. Stem cells function to maintain tissues and can do this through asymmetric division. The outcome of such a division is a self-renewed stem cell and a daughter cell that will differentiate. Not all stem cells divide in this way, but in many that do, a set of evolutionarily conserved molecules operates, such as the PAR complex, allowing them to divide asymmetrically and to transmit fate information to the daughter cell that will differentiate. One hypothesis aiming at explaining the role of stem cells in the context of cancer states that failed asymmetric stem cell divisions results in mis-specified cells, that can't be kept in check as they do not respond to the control mechanisms normally in place. This proposal aims at addressing the molecular mechanisms that control asymmetric stem cell division to prevent this from happening. The role of the PAR complex and the establishment of cell polarity is the subject of intense research, which is focussed however on cells that are largely none dividing such as epithelial cells, neurons or migratory cells. The difficulty to single out stem cells without ambiguity and to experimentally manipulate them in many mammalian models has hindered understanding the precise role of polarity in many relevant stem cells. Moreover, stem cells have the ability to continuously proliferate. Studying polarity in the context of cell division by standard genetic analysis such as the use of mutants or knockdown of the messenger RNA is unable to resolve the dynamics of the process as it does not provide temporal control. This proposal aims at addressing the link between proliferation and polarity.Drosophila neural stem cells, called neuroblasts, come from a genetically tractable organism, have a very short cell cycle, can be readily identified, are amenable to live cell imaging and their asymmetry is under the control of conserved proteins such as those of the PAR complex. We have developed chemical genetics in the fly that allow specific and acute inhibition of the activity of kinases. We will use this approach to specifically address how the cell cycle machinery regulates cell polarity in a model system stem cell. The upstream signals that drive stem cell polarity in a cell cycle dependent manner are understudied. Our approaches allow for the first time to temporally dissect the role of signalling by critical kinases on stem cell polarity, asymmetry and cell fate determination. Once the PAR complex achieves a polarized localization in neuroblasts in mitosis, it drives the asymmetric localization of molecules such as the NOTCH signalling regulator NUMB, that are exclusively segregated to daughter cells, where they instruct differentiation. Therefore, the asymmetric localization of fate determinants is also under cell cycle control. This is true for neuroblast, but also for other mammalian stem cells such those of the murine mammary gland, radial glia and haematopoietic stem cells. The molecular mechanism that patterns stem cells allowing the asymmetric localization of molecules such as NUMB are highly unclear. We hypothesise that the actomyosin network provides this patterning information. Our preliminary results further support the idea that posttranslational modification of fate determinants is required for their asymmetric retention at the actomyosin cortex. We aim at revealing the molecules that link phosphorylated determinants to the stem cell cortex in response to cell cycle dependent cues.
很明显,我们身体组织中干细胞的正确功能与这些组织发展恶性肿瘤的风险密切相关。在某些组织中,干细胞已被鉴定为癌症的起源细胞。因此,重要的是要揭示保护干细胞免于被驱动到异常增殖的机制,以便能够预防、控制或最小化它们发生故障时的影响。干细胞的功能是维持组织,并且可以通过不对称分裂来实现。这种分裂的结果是一个自我更新的干细胞和一个将分化的子细胞。并非所有的干细胞都以这种方式分裂,但在许多干细胞中,一组进化上保守的分子(如PAR复合物)起作用,使它们能够不对称分裂,并将命运信息传递给将要分化的子细胞。一个旨在解释干细胞在癌症背景下的作用的假设指出,失败的不对称干细胞分裂导致错误指定的细胞,这些细胞不能被控制,因为它们对正常的控制机制没有反应。该提案旨在解决控制不对称干细胞分裂的分子机制,以防止这种情况发生。PAR复合物的作用和细胞极性的建立是深入研究的主题,然而,这主要集中在基本上不分裂的细胞上,例如上皮细胞、神经元或迁移细胞。在许多哺乳动物模型中,很难毫无歧义地挑出干细胞并对其进行实验操作,这阻碍了对许多相关干细胞中极性的确切作用的理解。此外,干细胞具有持续增殖的能力。在细胞分裂的背景下通过标准遗传分析研究极性,例如使用突变体或敲低信使RNA,无法解决该过程的动力学,因为它不提供时间控制。果蝇神经干细胞(neuroblasts)来自于一种遗传上易处理的生物体,具有非常短的细胞周期,易于识别,易于活细胞成像,它们的不对称性受保守蛋白如PAR复合物的控制。我们已经在果蝇中开发了化学遗传学,可以特异性和急性抑制激酶的活性。我们将使用这种方法来具体解决细胞周期机制如何调节模型系统干细胞中的细胞极性。以细胞周期依赖性方式驱动干细胞极性的上游信号研究不足。我们的方法允许第一次暂时解剖的作用,信号传导的关键激酶对干细胞的极性,不对称性和细胞命运的决定。一旦PAR复合物在有丝分裂中在成神经细胞中实现极化定位,它就会驱动诸如NOTCH信号调节剂NUMB等分子的不对称定位,这些分子专门分离到子细胞,在子细胞中它们指导分化。因此,命运决定簇的不对称定位也受到细胞周期的控制。这不仅适用于神经母细胞,也适用于其他哺乳动物干细胞,如鼠乳腺干细胞、放射状神经胶质细胞和造血干细胞。使NUMB等分子不对称定位的干细胞模式化的分子机制尚不清楚。我们假设肌动球蛋白网络提供了这种模式化的信息。我们的初步研究结果进一步支持的想法,翻译后修饰的命运决定因素是必要的不对称保留在肌动球蛋白皮层。我们的目的是揭示分子连接磷酸化决定簇的干细胞皮质响应细胞周期依赖的线索。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium.
  • DOI:
    10.1016/j.cub.2022.08.063
  • 发表时间:
    2022-10-24
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Osswald, Mariana;Barros-Carvalho, Andre;Carmo, Ana M.;Loyer, Nicolas;Gracio, Patricia C.;Sunkel, Claudio E.;Homem, Catarina C. F.;Januschke, Jens;Morais-de-Sa, Eurico
  • 通讯作者:
    Morais-de-Sa, Eurico
Asymmetric cell division-specific phosphorylation of PAR-3 regulates neuroblasts polarisation and sensory organ formation in Drosophila
  • DOI:
    10.1101/2023.07.26.550680
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicolas Loyer;Elizabeth K J Hogg;Hayley Shaw;D. Murray;Greg M. Findlay;J. Januschke
  • 通讯作者:
    Nicolas Loyer;Elizabeth K J Hogg;Hayley Shaw;D. Murray;Greg M. Findlay;J. Januschke
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jens Januschke其他文献

aPKC regulates apical constriction to prevent tissue rupture in the emDrosophila/em follicular epithelium
aPKC 调节顶端收缩以防止 em 果蝇滤泡上皮中的组织破裂
  • DOI:
    10.1016/j.cub.2022.08.063
  • 发表时间:
    2022-10-24
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Mariana Osswald;André Barros-Carvalho;Ana M. Carmo;Nicolas Loyer;Patricia C. Gracio;Claudio E. Sunkel;Catarina C.F. Homem;Jens Januschke;Eurico Morais-de-Sá
  • 通讯作者:
    Eurico Morais-de-Sá
08-P016 Maintenance of the orientation of polarity in <em>Drosophila</em> larval brain neuroblasts
  • DOI:
    10.1016/j.mod.2009.06.323
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jens Januschke;Cayetano Gonzalez
  • 通讯作者:
    Cayetano Gonzalez
An Ana2/Ctp/Mud Complex Regulates Spindle Orientation in <em>Drosophila</em> Neuroblasts
  • DOI:
    10.1016/j.devcel.2011.08.002
  • 发表时间:
    2011-09-13
  • 期刊:
  • 影响因子:
  • 作者:
    Cheng Wang;Song Li;Jens Januschke;Fabrizio Rossi;Yasushi Izumi;Gisela Garcia-Alvarez;Serene Sze Ling Gwee;Swee Beng Soon;Harpreet Kaur Sidhu;Fengwei Yu;Fumio Matsuzaki;Cayetano Gonzalez;Hongyan Wang
  • 通讯作者:
    Hongyan Wang

Jens Januschke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

KLK10调控胶质—血管耦合与对话促缺血性卒中后血脑屏障修复的机制
  • 批准号:
    82371465
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
内质网、线粒体、细胞核互作网络与钙离子调控机制研究
  • 批准号:
    92054105
  • 批准年份:
    2020
  • 资助金额:
    80.0 万元
  • 项目类别:
    重大研究计划
基于p32-GCS1复合物的线粒体-内质网互作体系鉴定与功能研究
  • 批准号:
    92054106
  • 批准年份:
    2020
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
PKM2调控脂滴与线粒体互作机制及生理功能研究
  • 批准号:
    92054107
  • 批准年份:
    2020
  • 资助金额:
    83.0 万元
  • 项目类别:
    重大研究计划
基于功能蛋白质组学的线粒体相关内质网膜内源动态蛋白互作网络研究
  • 批准号:
    91954103
  • 批准年份:
    2019
  • 资助金额:
    74.0 万元
  • 项目类别:
    重大研究计划
棕色脂肪细胞脂滴线粒体互作的建立及维持机制研究
  • 批准号:
    91954108
  • 批准年份:
    2019
  • 资助金额:
    79.0 万元
  • 项目类别:
    重大研究计划
CRAC钙通道的功能及调控机制探究
  • 批准号:
    91954205
  • 批准年份:
    2019
  • 资助金额:
    291.0 万元
  • 项目类别:
    重大研究计划
新型二茂铁基四咪唑类大环配体的合成、表征及其金属配合物在非均相C-C偶联反应中的应用研究
  • 批准号:
    21102132
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
一类新型可调的手性膦配体的合成及其在不对称Suzuki-Miyaura反应中的应用
  • 批准号:
    20972196
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Spatially Resolved CRISPR Genomics for Dissecting Testicular Gene Functions at Scale
空间分辨 CRISPR 基因组学用于大规模剖析睾丸基因功能
  • 批准号:
    10573701
  • 财政年份:
    2023
  • 资助金额:
    $ 54.52万
  • 项目类别:
Dissecting the Molecular Link Between Stroke, Actin, and Alzheimer's Disease
剖析中风、肌动蛋白和阿尔茨海默病之间的分子联系
  • 批准号:
    10772704
  • 财政年份:
    2023
  • 资助金额:
    $ 54.52万
  • 项目类别:
Dissecting the impact of tumor-intrinsic chromosomal instability on the cancer ecosystem
剖析肿瘤内在染色体不稳定性对癌症生态系统的影响
  • 批准号:
    10651060
  • 财政年份:
    2023
  • 资助金额:
    $ 54.52万
  • 项目类别:
Dissecting the differential role of TREM2 and TYROBP in microglial homeostasis, activation, and disease
剖析 TREM2 和 TYROBP 在小胶质细胞稳态、激活和疾病中的不同作用
  • 批准号:
    10640102
  • 财政年份:
    2022
  • 资助金额:
    $ 54.52万
  • 项目类别:
Dissecting and targeting lysosomal signaling in kidney tumorigenesis
解析和靶向肾肿瘤发生中的溶酶体信号传导
  • 批准号:
    10367500
  • 财政年份:
    2022
  • 资助金额:
    $ 54.52万
  • 项目类别:
Project 3: Dissecting the neural and neuromodulatory control mechanisms of arterial dynamics during sleep
项目3:剖析睡眠期间动脉动力学的神经和神经调节控制机制
  • 批准号:
    10516503
  • 财政年份:
    2022
  • 资助金额:
    $ 54.52万
  • 项目类别:
Project 3: Dissecting the neural and neuromodulatory control mechanisms of arterial dynamics during sleep
项目3:剖析睡眠期间动脉动力学的神经和神经调节控制机制
  • 批准号:
    10673165
  • 财政年份:
    2022
  • 资助金额:
    $ 54.52万
  • 项目类别:
Dissecting and targeting lysosomal signaling in kidney tumorigenesis
解析和靶向肾肿瘤发生中的溶酶体信号传导
  • 批准号:
    10594980
  • 财政年份:
    2022
  • 资助金额:
    $ 54.52万
  • 项目类别:
Genetically Encoded Optical Biosensors for Dissecting Brain Distribution and Metabolism of Cannabinoids
用于解剖大脑分布和大麻素代谢的基因编码光学生物传感器
  • 批准号:
    10362521
  • 财政年份:
    2021
  • 资助金额:
    $ 54.52万
  • 项目类别:
Genetically Encoded Optical Biosensors for Dissecting Brain Distribution and Metabolism of Cannabinoids
用于解剖大脑分布和大麻素代谢的基因编码光学生物传感器
  • 批准号:
    10040050
  • 财政年份:
    2021
  • 资助金额:
    $ 54.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了