Systems-Mechanobiology of Endothelial Gap Dynamics

内皮间隙动力学的系统力学生物学

基本信息

  • 批准号:
    BB/V002708/1
  • 负责人:
  • 金额:
    $ 48.69万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The vasculature is a complex system, critical to the functioning of higher-level organisms. It is composed of large vessels that branch into smaller and smaller vessels. On the smallest scale, the microvasculature consists of arterioles, venules and capillaries. Here, oxygen and nutrients are exchanged between the vessels and the tissue. Also, immune or cancer cells can transmigrate through gaps within the blood vessels into the surrounding tissues. For the immune system, this is a critical function, as immune cells need to reach sites of infection. However, high levels of transmigration may also contribute to chronic inflammation, and cancer cells transmigrate the blood vessels during metastasis. Therefore, a tight regulation of the blood vessel gaps is critical during homeostasis, and de-regulation of gaps may contribute to diseases.Our preliminary mathematical modelling/in vitro experimental work revealed that a balance of intracellular forces in the endothelial cells, the cells that line the blood vessels, regulates the formation of gaps in between the cells. We found that these gaps occur most frequently at the vertex points between three endothelial cells, and may appear autonomously, in absence of transmigrating cells. This finding complemented earlier studies that uncovered a critical role of inflammatory signals, released by transmigrating cells, in the regulation of endothelial cells. We further showed that transmigrating cells may exploit these autonomously forming gaps by migrating towards the gaps, where they cross the endothelium. Therefore, studying the dynamic nature of the endothelium, and the resulting formation of gaps, is critical to understand the physiologically important processes of immune and cancer transmigration.In vivo, the dynamics of the microvasculature is influenced by several further biophysical properties not present in most in vitro assays. Notably, blood flow in the vessels, interactions of endothelial cells with the surrounding extracellular matrix, and the complex geometry and topology of the microvasculature, have all been found to influence endothelial dynamics individually. In vivo these properties exist simultaneously. Systems biology models are typically employed to study cellular decision making in response to multiple stimuli. However, current systems biology models are focused on the study of multiple molecular stimuli, e.g. inflammatory cytokines, but cannot capture biophysical stimuli. Therefore, there is an urgent need to incorporate the effect of multiple biophysical stimuli into systems biology models.In this project, we are developing an integrative modelling/experimental approach that incorporates multiple physiological biophysical properties into both mathematical models and in vitro assays. Our approach will advance models and experiments iteratively together to gain unprecedented insights into the dynamic nature of the endothelial microvasculature. The outcome will be a versatile mathematical modelling platform to study the dynamics of the microvasculature in homeostasis, and will underpin future work on the contribution of endothelial dynamics to diseases. Moreover, we will advance our recently developed engineered in vitro assays that can generate stable, perfused 3D microvasculature in complex extracellular matrices, and that is therefore ideally suited to validate our mathematical modelling predictions. The combined modelling/experimental system will be used to test several specific biological hypotheses on the complex role of major contributors to endothelial dynamics and gap formation.
血管系统是一个复杂的系统,对高级生物体的功能至关重要。它由大船组成,大船又分成越来越小的船。在最小的尺度上,微血管系统由小动脉、小静脉和毛细血管组成。在这里,氧气和营养物质在血管和组织之间交换。此外,免疫细胞或癌细胞可以通过血管内的缝隙转移到周围组织。对于免疫系统来说,这是一项关键的功能,因为免疫细胞需要到达感染部位。然而,高水平的转移也可能导致慢性炎症,癌细胞在转移过程中会转移血管。因此,在动态平衡过程中,严格调节血管间隙是至关重要的,而间隙的解除调节可能会导致疾病。我们的初步数学建模/体外实验工作显示,内皮细胞(排列血管的细胞)内的细胞内力平衡调节细胞之间间隙的形成。我们发现,这些间隙最常出现在三个内皮细胞之间的顶点,在没有迁移细胞的情况下,这些间隙可能是自主出现的。这一发现是对早期研究的补充,这些研究揭示了由迁移细胞释放的炎症信号在调节内皮细胞中的关键作用。我们进一步表明,迁移细胞可以通过向缝隙迁移来利用这些自主形成的缝隙,在那里它们穿过内皮。因此,研究内皮细胞的动态性质以及由此导致的缝隙的形成,对于理解免疫和肿瘤转移的重要生理过程至关重要。在体内,微血管的动力学受到一些在大多数体外检测中不存在的进一步生物物理性质的影响。值得注意的是,血管中的血流,内皮细胞与周围细胞外基质的相互作用,以及微血管的复杂几何和拓扑结构,都被发现单独影响内皮动力学。在体内,这些特性同时存在。系统生物学模型通常被用来研究细胞对多种刺激的反应决策。然而,目前的系统生物学模型侧重于研究多种分子刺激,如炎性细胞因子,而不能捕捉生物物理刺激。因此,迫切需要将多种生物物理刺激的影响融入到系统生物学模型中。在这个项目中,我们正在开发一种将多种生理生物物理特性结合到数学模型和体外分析中的综合建模/实验方法。我们的方法将反复推进模型和实验,以获得对内皮微血管动态性质的前所未有的洞察。这一成果将成为一个通用的数学建模平台,用于研究微血管系统在动态平衡中的动力学,并将为未来关于内皮动力学对疾病的贡献的工作奠定基础。此外,我们将推进我们最近开发的体外工程测试,这种测试可以在复杂的细胞外基质中产生稳定的、灌流的3D微血管,因此非常适合验证我们的数学建模预测。这个联合的模拟/实验系统将被用来测试几个特定的生物学假说,这些假说是关于内皮动态和缺口形成的主要贡献者的复杂作用。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity.
  • DOI:
    10.1038/s41467-022-34701-y
  • 发表时间:
    2022-11-19
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    McEvoy, Eoin;Sneh, Tal;Moeendarbary, Emad;Javanmardi, Yousef;Efimova, Nadia;Yang, Changsong;Marino-Bravante, Gloria E.;Chen, Xingyu;Escribano, Jorge;Spill, Fabian;Manuel Garcia-Aznar, Jose;Weeraratna, Ashani T.;Svitkina, Tatyana M.;Kamm, Roger D.;Shenoy, Vivek B.
  • 通讯作者:
    Shenoy, Vivek B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fabian Spill其他文献

Optimisation of simulations of stochastic processes by removal of opposing reactions.
通过消除相反反应来优化随机过程的模拟。
  • DOI:
    10.1063/1.4942413
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fabian Spill;P. Maini;Helen M. Byrne
  • 通讯作者:
    Helen M. Byrne
Effect of physical and geometrical stimuli on microvascular dynamics
  • DOI:
    10.1016/j.bpj.2022.11.1698
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Pradeep Keshavanarayana;Yousef Javanmardi;Emad Moeendarbary;Fabian Spill
  • 通讯作者:
    Fabian Spill
A Mathematical Exploration of SDH-b Loss in Chromaffin Cells
  • DOI:
    10.1007/s11538-025-01427-z
  • 发表时间:
    2025-03-13
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Elías Vera-Sigüenza;Himani Rana;Ramin Nashebi;Ielyaas Cloete;Katarína Kl’uvčková;Fabian Spill;Daniel A. Tennant
  • 通讯作者:
    Daniel A. Tennant

Fabian Spill的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fabian Spill', 18)}}的其他基金

Systems-Mechanobiology of Health and Disease
健康与疾病的系统力学生物学
  • 批准号:
    MR/T043571/1
  • 财政年份:
    2021
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Fellowship

相似海外基金

Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Calcification
心血管钙化中内皮向间质转化的力学生物学
  • 批准号:
    10631013
  • 财政年份:
    2022
  • 资助金额:
    $ 48.69万
  • 项目类别:
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2022
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2021
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Discovery Grants Program - Individual
Systems-Mechanobiology of Endothelial Gap Dynamics
内皮间隙动力学的系统力学生物学
  • 批准号:
    BB/V001418/1
  • 财政年份:
    2021
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Research Grant
Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Calcification
心血管钙化中内皮向间质转化的力学生物学
  • 批准号:
    10442385
  • 财政年份:
    2020
  • 资助金额:
    $ 48.69万
  • 项目类别:
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2020
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Discovery Grants Program - Individual
Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Calcification
心血管钙化中内皮向间质转化的力学生物学
  • 批准号:
    10625842
  • 财政年份:
    2020
  • 资助金额:
    $ 48.69万
  • 项目类别:
Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Calcification
心血管钙化中内皮-间质转化的力学生物学
  • 批准号:
    10187651
  • 财政年份:
    2020
  • 资助金额:
    $ 48.69万
  • 项目类别:
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
  • 批准号:
    RGPIN-2018-06161
  • 财政年份:
    2019
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: EMBRACE STEM (Endothelial MechanoBiology Research And multiCultural Education in STEM)
职业:拥抱 STEM(内皮力学生物学研究和 STEM 中的多文化教育)
  • 批准号:
    1846962
  • 财政年份:
    2019
  • 资助金额:
    $ 48.69万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了