Directing luteinising hormone receptor activity in vivo: A convergent approach to study GPCR molecular complexes
体内指导黄体生成素受体活性:研究 GPCR 分子复合物的聚合方法
基本信息
- 批准号:BB/V006142/1
- 负责人:
- 金额:$ 71.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Developments in our scientific understanding of biological systems highlight the complexity and interconnected nature of such systems. When integration of biological systems fails, disease can result. Thus, to advance both our understanding of these fundamental mechanisms, scientists from different fields are working together to address these biological challenges, and in turn develop better treatments for a range of diseases. This project will integrate cell biology with biophysics, artificial intelligence, chemistry, computational modeling and physiology, termed a convergent or trans-disciplinary approach, to problem-solve the fundamental question: how do hormones act on the female ovary- a complex organ of distinct interconnected cells. The ovary is a hub of female reproduction. Within the ovary, each egg is encapsulated in a highly organized group of cells, termed the follicle. Different cell types within the follicle respond to hormonal cues, communicating with the egg to ensure a single mature egg is released each month for fertilisation. A key hormone that develops the egg, causes its release and provides the hormones critical in early pregnancy if the egg is fertilized, is luteinising hormone (LH). LH coordinates these functions by binding to its specific receptor on the surface of the cell, the LHR. LHR is part of a large family of receptors called G protein-coupled receptors (GPCRs) with more than 800 different types that respond to light, smells, taste, chemical transmitters in the brain and a variety of different hormones. Thus, GPCRs are a popular drug target, however, there is high demand for new drugs that are more specific, have fewer side effects, and that are active for longer. Such developments require an in-depth understanding of the molecular mechanisms from complex biological systems to control receptor activity in a highly controlled manner. One important way receptors can modify how they communicate is by associating with each other. Our previous BBSRC-funded studies have dissected how LHR signalling is altered via its association with itself (homomers) and another important reproductive hormone receptor, the follicle stimulating hormone (FSHR) as heteromers. We have visualised LHR homomers and LHR/FSHR heteromers by employing a form of microscopy called super resolution imaging- a technique called photoactivated dye localisation microscopy (PD-PALM), which provides the ability to image single receptors on the surface of the cell. Our work has revealed that LHR receptors exist as monomers and a range of size of homomers/heteromers. Altering the pattern of these receptor-receptor association can change the type, duration and magnitude of signals generated inside cells. An outstanding and important question that remains is how the organization of LHR complexes contributes to LHR's multiple functions in the follicle. We will use our single molecule microscopy technique of PD-PALM with machine learning technology to create a novel automated platform to visualize LHR molecular complexes (receptor with it's signaling machinery) in the different follicle cell types and 'open' follicles that retains the communication with the egg. Combining PD-PALM images from follicle cells with computational simulations will unpick how LHR engages with each other, and employ novel chemical, small molecule and antibody tools to disrupt or manipulate these interactions to understand their role in regulating multiple ovarian functions via biophysical, biochemical and genetic methods. We anticipate that in the future, the information generated can be directly applied to improve the quality of life of women with conditions such as polycystic ovarian syndrome, hormone-dependent cancer, infertility, premature ovarian failure, and potentially applied to other diseases that involve GPCRs.
我们对生物系统的科学认识的发展突出了这种系统的复杂性和相互关联的性质。当生物系统的整合失败时,就会导致疾病。因此,为了促进我们对这些基本机制的理解,来自不同领域的科学家正在共同努力解决这些生物学挑战,从而为一系列疾病开发更好的治疗方法。该项目将细胞生物学与生物物理学,人工智能,化学,计算建模和生理学相结合,称为收敛或跨学科的方法,以解决基本问题:激素如何作用于女性卵巢-一个复杂的器官不同的相互连接的细胞。卵巢是女性生殖的枢纽。在卵巢内,每个卵子被包裹在一个高度组织化的细胞群中,称为卵泡。卵泡内不同类型的细胞对激素信号做出反应,与卵子沟通,以确保每个月释放一个成熟的卵子进行受精。促黄体生成激素(LH)是一种关键的激素,它使卵子发育,导致其释放,并在卵子受精时提供怀孕早期的关键激素。LH通过与细胞表面的特异性受体LHR结合来协调这些功能。LHR是一个名为G蛋白偶联受体(GPCR)的受体大家族的一部分,该家族有800多种不同的类型,对光线、气味、味觉、大脑中的化学递质和各种不同的激素做出反应。因此,GPCR是一种流行的药物靶标,然而,对更特异、副作用更少、活性更长的新药的需求很高。这些发展需要深入了解复杂生物系统的分子机制,以高度受控的方式控制受体活性。受体改变其交流方式的一个重要方式是相互联系。我们以前的BBSRC资助的研究已经解剖了LHR信号是如何通过其自身(同聚体)和另一个重要的生殖激素受体,促卵泡激素(FSHR)作为异聚体的关联而改变的。我们已经可视化LHR同聚体和LHR/FSHR异聚体通过采用一种称为超分辨率成像的显微镜形式-一种称为光活化染料定位显微镜(PD-PALM)的技术,它提供了成像细胞表面上单个受体的能力。我们的工作揭示了LHR受体以单体和一系列大小的同聚体/异聚体的形式存在。改变这些受体-受体结合的模式可以改变细胞内产生的信号的类型、持续时间和幅度。一个突出的和重要的问题,仍然是如何组织的LHR复合物有助于LHR的多种功能在卵泡。我们将使用我们的PD-PALM单分子显微镜技术和机器学习技术来创建一个新的自动化平台,以可视化不同卵泡细胞类型和“开放”卵泡中的LHR分子复合物(受体及其信号传导机制),这些卵泡保留与卵子的通信。将来自卵泡细胞的PD-PALM图像与计算模拟相结合,将揭示LHR如何相互作用,并采用新型化学,小分子和抗体工具来破坏或操纵这些相互作用,以了解它们在通过生物物理,生物化学和遗传方法调节多种卵巢功能中的作用。我们预计,在未来,所产生的信息可以直接应用于改善患有多囊卵巢综合征,卵巢依赖性癌症,不孕症,卵巢早衰等疾病的妇女的生活质量,并可能应用于涉及GPCR的其他疾病。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reduced FSH and LH action: implications for medically assisted reproduction.
减少FSH和LH作用:对医学辅助生殖的影响。
- DOI:10.1093/humrep/deab065
- 发表时间:2021-05-17
- 期刊:
- 影响因子:0
- 作者:Bosch E;Alviggi C;Lispi M;Conforti A;Hanyaloglu AC;Chuderland D;Simoni M;Raine-Fenning N;Crépieux P;Kol S;Rochira V;D'Hooghe T;Humaidan P
- 通讯作者:Humaidan P
Functional rewiring of G protein-coupled receptor signaling in human labor.
- DOI:10.1016/j.celrep.2022.111318
- 发表时间:2022-09-06
- 期刊:
- 影响因子:8.8
- 作者:Walker, Abigail R.;Larsen, Camilla B.;Kundu, Samit;Stavrinidis, Christina;Kim, Sung Hye;Inoue, Asuka;Woodward, David F.;Lee, Yun S.;Migale, Roberta;Macntyre, David A.;Terzidou, Vasso;Fanelli, Francesca;Khanjani, Shirin;Bennet, Philip R.;Hanyaloglu, Aylin C.
- 通讯作者:Hanyaloglu, Aylin C.
Addition of a carboxy-terminal tail to the normally tailless gonadotropin-releasing hormone receptor impairs fertility in female mice.
- DOI:10.7554/elife.72937
- 发表时间:2021-12-23
- 期刊:
- 影响因子:7.7
- 作者:Toufaily C;Fortin J;Alonso CA;Lapointe E;Zhou X;Santiago-Andres Y;Lin YF;Cui Y;Wang Y;Devost D;Roelfsema F;Steyn F;Hanyaloglu AC;Hébert TE;Fiordelisio T;Boerboom D;Bernard DJ
- 通讯作者:Bernard DJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aylin Hanyaloglu其他文献
Editorial: Pharmacology of endocrine related GPCRs
社论:内分泌相关 GPCR 的药理学
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.2
- 作者:
Francesco De Pascali;Aylin Hanyaloglu;Frédéric Jean;Francesco Potì;Éric Reiter - 通讯作者:
Éric Reiter
Aylin Hanyaloglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aylin Hanyaloglu', 18)}}的其他基金
Programming GPCR signalling within the endocytic network; mechanisms and therapeutic applications
在内吞网络内编程 GPCR 信号传导;
- 批准号:
BB/S001565/1 - 财政年份:2018
- 资助金额:
$ 71.39万 - 项目类别:
Research Grant
Development of commercialization platforms for single molecule imaging of GPCR oligomers via super-resolution microscopy
通过超分辨率显微镜开发 GPCR 寡聚物单分子成像的商业化平台
- 批准号:
BB/P01156X/1 - 财政年份:2016
- 资助金额:
$ 71.39万 - 项目类别:
Research Grant
相似海外基金
Directing luteinising hormone receptor activity in vivo: A convergent approach to study GPCR molecular complexes
体内指导黄体生成素受体活性:研究 GPCR 分子复合物的聚合方法
- 批准号:
BB/V00719X/1 - 财政年份:2022
- 资助金额:
$ 71.39万 - 项目类别:
Research Grant
Directing luteinising hormone receptor activity in vivo: A convergent approach to study GPCR molecular complexes
体内指导黄体生成素受体活性:研究 GPCR 分子复合物的聚合方法
- 批准号:
BB/V006533/1 - 财政年份:2021
- 资助金额:
$ 71.39万 - 项目类别:
Research Grant