Genetically ENgineered BIOsensors to detect BIological Threats (GENBIOBIT): Influenza A Virus
用于检测生物威胁的基因工程生物传感器 (GENBIOBIT):甲型流感病毒
基本信息
- 批准号:BB/V017365/1
- 负责人:
- 金额:$ 16.7万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We want to pioneer a new class of genetically engineered biosensors that can rapidly, sensitively and efficiently detect and diagnose infectious diseases to address the fast-changing landscape of human and animal population biosurveillance. Infectious diseases and emerging biological threats (natural, accidental or deliberate) are a challenge to UK security. We aim to deliver a step-change in current technological capability to overcome the current barriers that prevent cell-based biosensors to work in the field without sample preparation at ambient temperature for a prolonged period of time. This new technology could be part of a nationwide biosurveillance network of multiple biological threats with large economic and societal impact. In particular, we want to establish proof-of-feasibility for the influenza A virus. IAVs have proven potential to damage livestock welfare and productivity, as well as to cause human pandemics. They thrive in wild animal populations and can transmit to farmed animals. As well as causing direct economic harm, this then provides a gateway for zoonotic infections (e.g. avian H5N1 and swine H1N1 subtypes). The worst recorded instance is the 1918 pandemic that resulted in the deaths of more than 50 million people. To reduce economic impacts as well as public health risk, there is a need to monitor and control the disease in the animal source. Despite multiple IAVs biosensors have been developed in the lab, there is currently no practical applications. We wish to introduce a key innovation that will enable their use in the field, and in particular in animal drinkers. The key innovation is a synthetic membrane receptor that 1) has an extracellular domain that is highly selective to IAVs 2) has an intra-cellular domain that activates specific genes of interest controlling cell behavior upon virus binding 3) can be expressed in a resilient cell line originating from rainbow trout gills, that was demonstrated to survive over a range of temperature from more than a year in the field without maintenance to test water toxicity. Finally, by combining multielectrode arrays and multiple engineered cell lines (with the same selectivity to the virus but encoding different cell behavior) we will have a multiplexed electronic readout improving considerably the robustness and its potential to discriminate (diagnose) IAVs from others biological threats (toxins, bacteria, viruses) with faster response time and sensitivity than signals associated with pathogen associated cell death. Phone-sized hybrid sensors (containing several gene-engineered cells interrogated in parallel by multi-electrode arrays) will be demonstrated in the lab (TRL3) to detect and discriminate between IAVs and other pathogens or toxins. Our approach harnesses synthetic biology and data science to monitor existing infectious diseases and thus rapidly adapt to emerging biological threats. The extra-cellular part of the synthetic receptor can be quickly re-engineered to address other biological threats. Genetically engineered Biosensors will pave the way towards networks of biosensors that can be deployed in the field sampling water (drinkers, ponds, lakes) or volatiles (e.g. in air conditioning system) and could directly alert or feed real-time data to monitoring centres. This novel technology, demonstrated with a portable biosensor detecting IAV, will also provide a broader impact on the life science community for which novel tools for the detection of target binding are highly desirable (e.g. drug screening, infectious diseases). This will also provide a new tool for the emerging field of bio-computation. This is a highly interdisciplinary project with great potential for the PDRAs involved to work across the discipline of virology, synthetic biology and biosensing.
我们希望开创一种新型基因工程生物传感器,能够快速、灵敏、高效地检测和诊断传染病,以应对快速变化的人类和动物种群生物监测形势。传染病和新出现的生物威胁(自然的、意外的或故意的)是对英国安全的挑战。我们的目标是实现当前技术能力的重大变革,以克服当前阻碍细胞生物传感器在环境温度下长时间无需样品制备的情况下在现场工作的障碍。这项新技术可能成为全国范围内多种生物威胁生物监测网络的一部分,具有巨大的经济和社会影响。 特别是,我们希望为甲型流感病毒建立可行性证明。事实证明,IAV 有可能损害牲畜福利和生产力,并导致人类流行病。它们在野生动物种群中繁衍生息,并可以传播给养殖动物。这不仅造成直接的经济损害,还为人畜共患感染(例如禽类 H5N1 和猪 H1N1 亚型)提供了途径。有记录以来最严重的一次是 1918 年的大流行,导致超过 5000 万人死亡。为了减少经济影响和公共卫生风险,需要监测和控制动物源疾病。尽管实验室已经开发出多种IAV生物传感器,但目前还没有实际应用。我们希望推出一项关键创新,使其能够在现场使用,特别是在动物饮水器中。关键的创新是一种合成膜受体,它 1) 具有对 IAV 高度选择性的胞外结构域 2) 具有细胞内结构域,可在病毒结合时激活控制细胞行为的特定感兴趣基因 3) 可以在源自虹鳟鱼鳃的弹性细胞系中表达,事实证明,该细胞系可以在野外一年多的温度范围内生存,无需维护来测试水毒性。最后,通过结合多电极阵列和多个工程细胞系(对病毒具有相同的选择性,但编码不同的细胞行为),我们将拥有一个多重电子读数装置,大大提高了稳健性及其区分(诊断)IAV 与其他生物威胁(毒素、细菌、病毒)的潜力,其响应时间和灵敏度比与病原体相关细胞死亡相关的信号更快。手机大小的混合传感器(包含由多电极阵列并行询问的多个基因工程细胞)将在实验室(TRL3)中展示,以检测和区分 IAV 和其他病原体或毒素。我们的方法利用合成生物学和数据科学来监测现有的传染病,从而快速适应新出现的生物威胁。合成受体的细胞外部分可以快速重新设计以应对其他生物威胁。基因工程生物传感器将为生物传感器网络铺平道路,生物传感器网络可以部署在现场采样水(饮用水、池塘、湖泊)或挥发物(例如空调系统),并可以直接向监测中心发出警报或提供实时数据。这项新技术通过检测 IAV 的便携式生物传感器得到了证明,也将为生命科学界带来更广泛的影响,因为生命科学界非常需要用于检测靶标结合的新工具(例如药物筛选、传染病)。这也将为新兴的生物计算领域提供新的工具。这是一个高度跨学科的项目,对于参与病毒学、合成生物学和生物传感学科的 PDRA 来说具有巨大的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre Bagnaninchi其他文献
Monitoring adipose-derived stem cells within 3D carrier by combined dielectric spectroscopy and spectral domain optical coherence tomography
通过组合介电光谱和谱域光学相干断层扫描监测 3D 载体内的脂肪干细胞
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Pierre Bagnaninchi - 通讯作者:
Pierre Bagnaninchi
UVR and RPE – The Good, the Bad and the degenerate Macula
紫外线辐射与视网膜色素上皮细胞——好的、坏的以及退化的黄斑
- DOI:
10.1016/j.preteyeres.2023.101233 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:14.700
- 作者:
Graham Anderson;Shyamanga Borooah;Roly Megaw;Pierre Bagnaninchi;Richard Weller;Andrew McLeod;Baljean Dhillon - 通讯作者:
Baljean Dhillon
Measurements of adipose derived stem cell vitality with optical coherence phase microscopy
使用光学相干相位显微镜测量脂肪干细胞活力
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Pierre Bagnaninchi - 通讯作者:
Pierre Bagnaninchi
FRI-354-YI A dynamic human liver acinus-on-a-chip to model health-to-disease (MASLD-MASH) transitions
FRI - 354 - YI一种动态人肝腺泡芯片用于模拟健康到疾病(代谢相关脂肪性肝病 - 非酒精性脂肪性肝炎)的转变
- DOI:
10.1016/s0168-8278(25)01592-2 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Debbie Neill;Anabel Martinez Lyons;Callum Rafferty;Justyna Cholewa-Waclaw;Pierre Bagnaninchi;Leonard J. Nelson - 通讯作者:
Leonard J. Nelson
FRI-339 Identifying health-to-disease transitional biomarkers in 3D human organotypic models of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)
FRI - 339在代谢功能障碍相关脂肪性肝病(MASLD)和代谢功能障碍相关脂肪性肝炎(MASH)的3D人器官型模型中识别健康 - 疾病转化生物标志物
- DOI:
10.1016/s0168-8278(25)01581-8 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
Anabel Martinez Lyons;Callum Rafferty;Debbie Neill;Tim Kendall;Jonathan Fallowfield;Justyna Cholewa-Waclaw;Pierre Bagnaninchi;Leonard J. Nelson - 通讯作者:
Leonard J. Nelson
Pierre Bagnaninchi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre Bagnaninchi', 18)}}的其他基金
MechAscan - A novel on line mechanical assessment tool for manufacturing engineered tissues in regenerative medicine and drug discovery.
MechAscan - 一种新型在线机械评估工具,用于制造再生医学和药物发现中的工程组织。
- 批准号:
EP/P031250/1 - 财政年份:2018
- 资助金额:
$ 16.7万 - 项目类别:
Research Grant
4D monitoring of stem cell differentiation by dielectric spectroscopic optical coherence tomography
通过介电光谱光学相干断层扫描对干细胞分化进行 4D 监测
- 批准号:
EP/G030871/1 - 财政年份:2008
- 资助金额:
$ 16.7万 - 项目类别:
Research Grant
相似海外基金
Engineered bacteriophages as biosensors for the rapid diagnosis of bacterial infection
工程噬菌体作为生物传感器,用于快速诊断细菌感染
- 批准号:
2879026 - 财政年份:2023
- 资助金额:
$ 16.7万 - 项目类别:
Studentship
EAGER SitS:Smart Long-Lived Biosensors for Soil Monitoring Using Engineered Spores
EAGER SitS:使用工程孢子进行土壤监测的智能长寿命生物传感器
- 批准号:
1841419 - 财政年份:2019
- 资助金额:
$ 16.7万 - 项目类别:
Standard Grant
Design of a biocompatible, swellable polymer microneedle system for transdermal deployment of engineered whole-cell biosensors
设计生物相容性、可膨胀聚合物微针系统,用于工程全细胞生物传感器的透皮部署
- 批准号:
502941-2017 - 财政年份:2019
- 资助金额:
$ 16.7万 - 项目类别:
Postdoctoral Fellowships
Design of a biocompatible, swellable polymer microneedle system for transdermal deployment of engineered whole-cell biosensors
设计生物相容性、可膨胀聚合物微针系统,用于工程全细胞生物传感器的透皮部署
- 批准号:
502941-2017 - 财政年份:2018
- 资助金额:
$ 16.7万 - 项目类别:
Postdoctoral Fellowships
CAREER: Closed-loop control of engineered metabolism using biosensors and optogenetics
职业:利用生物传感器和光遗传学对工程代谢进行闭环控制
- 批准号:
1751840 - 财政年份:2018
- 资助金额:
$ 16.7万 - 项目类别:
Continuing Grant
Design of a biocompatible, swellable polymer microneedle system for transdermal deployment of engineered whole-cell biosensors
设计生物相容性、可膨胀聚合物微针系统,用于工程全细胞生物传感器的透皮部署
- 批准号:
502941-2017 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
Postdoctoral Fellowships
Engineered circular RNAs: A novel platform for genetically encoded RNA-based biosensors and their application as real-time viral infection reporters
工程环状RNA:基于基因编码RNA的生物传感器的新型平台及其作为实时病毒感染报告基因的应用
- 批准号:
9397184 - 财政年份:2017
- 资助金额:
$ 16.7万 - 项目类别:
Intracellular biosensors based on engineered fluorescent proteins: new tools and techniques for imaging the spatiotemporal dynamics of correlated biochemical events in single cells
基于工程荧光蛋白的细胞内生物传感器:用于对单细胞中相关生化事件的时空动态进行成像的新工具和技术
- 批准号:
183311 - 财政年份:2009
- 资助金额:
$ 16.7万 - 项目类别:
Operating Grants
Engineered alkaline phosphatases as biosensors
作为生物传感器的工程碱性磷酸酶
- 批准号:
6598461 - 财政年份:2003
- 资助金额:
$ 16.7万 - 项目类别:
Engineered alkaline phosphatases as biosensors
作为生物传感器的工程碱性磷酸酶
- 批准号:
6721456 - 财政年份:2003
- 资助金额:
$ 16.7万 - 项目类别:














{{item.name}}会员




