Dissecting the role of infection-driven protein mono-glycosylation in Legionella-host interaction

剖析感染驱动的蛋白质单糖基化在军团菌-宿主相互作用中的作用

基本信息

  • 批准号:
    BB/W002752/1
  • 负责人:
  • 金额:
    $ 56.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Humans constantly touch, swallow or inhale microorganisms such as bacteria, which exist in large numbers everywhere around us. In the vast majority of these encounters the body remains unharmed, because specialised cells of the body's defences, so called macrophages, catch the bacterial intruders, ingest and kill them. Seemingly a straight forward and simple restrictive measure, sequestration and killing of the bacteria is a highly complex process involving many proteins, which reshape the macrophage to engulf the bacteria and trigger intracellular mechanisms to dismantle them. Most bacteria do not fight back, but pathogenic bacteria employ proteins, termed effectors, to interfere with antimicrobial mechanisms. The outcome of this battle is significantly influenced by the health status of the infected person. With increasing age or underlying health conditions as well as due to poor life style choices such as smoking the capacity of macrophages to carry out this essential protective function diminishes, making it easier for pathogens to overwhelm them and cause disease.Our understanding of the complex processes in the macrophage as well as of the weaponry of the bacteria is still superficial; however, in depth knowledge will be required to design new treatments to disarm the bacteria or boost the antimicrobial power of macrophages. Here, in this project we will use the bacterium Legionella pneumophila as model to investigate a new aspect of the interaction of bacteria and host.L. pneumophila is usually found in fresh water bodies in the environment, but if inhaled survives and multiplies in human lung macrophages causing respiratory disease, which in the elderly or patients with compromised immunity or underlying respiratory disease can develop into Legionnaires' disease, a potentially fatal pneumonia. The exploitation of macrophages requires the Dot/Icm type IV secretion system (T4SS), a complex machinery that transports hundreds of effectors from the bacteria into the host cell, in which they manipulate processes to the benefit of the bacteria.To carry out these manipulations some effectors modify host proteins with small chemical groups, so called post-translational modifications (PTMs). Some PTMs are used in human cells to modulate the activity of the modified protein. The effector-mediated modifications can mimic PTMs usually occurring in host cells, thus activating a natural activity of the host protein, or be new, inhibiting or reprogramming the function of the target protein.We recently discovered that in the test tube the L. pneumophila effector LtpM modifies numerous proteins with a Glucose sugar moiety; however, how LtpM actually activates and attaches the sugar, which residues of the host targets are modified and what the role of this PTM during infection is remains unknown. Interestingly, in mammalian cells a similar, but not identical modification with one sugar moiety is an abundant PTM and used by house-keeping proteins to modulate protein activity in response to for example nutrient availability. It has been implicated in diseases such as diabetes; however, its role in the response of human cells to bacterial infection is not well characterised yet. In this project we aim to reveal the mode of action of LtpM by determining its three dimensional structure and identifying residues, which are essential for its function. We will profile the proteins that are modified by LtpM and/or the house-keeping machinery and analyse if these two PTMs co-exist or compete. We will then determine the effect of the PTMs on the activities of the modified proteins and their role in L. pneumophila infection, promising to reveal a new bacterial warfare strategy and fundamental new knowledge about the human host response, integral information for understanding susceptibility to infection and designing new antimicrobial therapies.
人类不断地接触、吞咽或吸入细菌等微生物,这些微生物在我们周围的任何地方都大量存在。在绝大多数这些遭遇中,身体仍然没有受到伤害,因为身体防御的专门细胞,所谓的巨噬细胞,捕捉细菌入侵者,摄取并杀死它们。表面上看起来是一种直接和简单的限制性措施,隔离和杀死细菌是一个高度复杂的过程,涉及许多蛋白质,这些蛋白质重塑巨噬细胞以吞噬细菌并触发细胞内机制来拆除它们。大多数细菌不会反击,但病原菌利用蛋白质,称为效应子,干扰抗菌机制。这场战斗的结果在很大程度上受感染者的健康状况影响。随着年龄的增长或潜在的健康状况以及由于不良的生活方式选择,如吸烟,巨噬细胞执行这种基本保护功能的能力减弱,使病原体更容易压倒它们并引起疾病。然而,需要深入的知识来设计新的治疗方法,以解除细菌的武装或提高巨噬细胞的抗菌能力。在本项目中,我们将以嗜肺军团菌为模型,研究细菌与宿主相互作用的新方面。嗜肺军团菌通常存在于环境中的淡水水体中,但如果吸入,则会在人体肺部巨噬细胞中存活并繁殖,导致呼吸系统疾病,而老年人或免疫力受损或患有潜在呼吸系统疾病的患者可能发展为退伍军人症,这是一种可能致命的肺炎。巨噬细胞的利用需要Dot/Icm IV型分泌系统(T4 SS),这是一个复杂的机制,它将数百种效应物从细菌转运到宿主细胞中,在其中它们操纵过程以使细菌受益。为了进行这些操纵,一些效应物用小的化学基团修饰宿主蛋白,所谓的翻译后修饰(PTM)。一些PTM用于人细胞中以调节修饰蛋白的活性。效应子介导的修饰可以模拟通常发生在宿主细胞中的PTM,从而激活宿主蛋白的天然活性,或者是新的,抑制或重编程靶蛋白的功能。嗜肺菌效应子LtpM用葡萄糖部分修饰许多蛋白质;然而,LtpM实际上如何激活和附着糖,宿主靶标的哪些残基被修饰以及这种PTM在感染期间的作用仍然未知。有趣的是,在哺乳动物细胞中,具有一个糖部分的类似但不相同的修饰是丰富的PTM,并且被管家蛋白用于响应于例如营养物质的可用性来调节蛋白质活性。它与糖尿病等疾病有关;然而,它在人体细胞对细菌感染的反应中的作用尚未得到很好的表征。在这个项目中,我们的目标是揭示LtpM的作用方式,通过确定其三维结构和识别残基,这是必不可少的功能。我们将分析由LtpM和/或管家机制修饰的蛋白质,并分析这两种PTM是否共存或竞争。然后我们将确定PTM对修饰蛋白活性的影响及其在L.嗜肺菌感染,有望揭示新的细菌战策略和有关人类宿主反应的基本新知识,以及了解感染易感性和设计新抗菌疗法的完整信息。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Glycosylating Effectors of Legionella pneumophila: Finding the Sweet Spots for Host Cell Subversion.
  • DOI:
    10.3390/biom12020255
  • 发表时间:
    2022-02-04
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Belyi Y;Levanova N;Schroeder GN
  • 通讯作者:
    Schroeder GN
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunnar Schroeder其他文献

Rocking Motion of a Protein-Folding Nano-Machine Revealed By Single-Particle Cryo-Em
  • DOI:
    10.1016/j.bpj.2009.12.192
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Junjie Zhang;Matthew L. Baker;Gunnar Schroeder;Nick R. Douglas;Joanita Jakana;Caroline J. Fu;Michael Levitt;Steven J. Ludtke;Judith Frydman;Wah Chiu
  • 通讯作者:
    Wah Chiu

Gunnar Schroeder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunnar Schroeder', 18)}}的其他基金

Dissecting the modulation of nucleocytoplasmic signalling, host cell cycle and differentiation by a new family of Legionella protease effectors
剖析军团菌蛋白酶效应子新家族对核细胞质信号传导、宿主细胞周期和分化的调节
  • 批准号:
    MR/R010552/1
  • 财政年份:
    2018
  • 资助金额:
    $ 56.07万
  • 项目类别:
    Research Grant

相似国自然基金

PfAP2-R介导的PfCRT转录调控在恶性疟原虫对喹啉类药物抗性中的作用及机制研究
  • 批准号:
    82372275
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
Sestrin2抑制内质网应激对早产儿视网膜病变的调控作用及其机制研究
  • 批准号:
    82371070
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Dissecting microbiota-driven lymphangiogenesis in immune health and disease
剖析免疫健康和疾病中微生物驱动的淋巴管生成
  • 批准号:
    10722819
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the mechanism of pyrantel resistance in hookworm
剖析钩虫对噻嘧啶的抗性机制
  • 批准号:
    10666263
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the impact of immune environment on Candida albicans pathogenic potential in the gut
剖析免疫环境对肠道白色念珠菌致病潜力的影响
  • 批准号:
    10724531
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
  • 批准号:
    10736007
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the Molecular Mechanisms of Exocytic Vesicle Tethering and Fusion
剖析胞吐囊泡束缚和融合的分子机制
  • 批准号:
    10552360
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the role of GPR34 in cDC1 migration and function
剖析 GPR34 在 cDC1 迁移和功能中的作用
  • 批准号:
    10748747
  • 财政年份:
    2023
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the molecular regulation of T cell localization and function within the Mycobacterium tuberculosis granuloma
剖析结核分枝杆菌肉芽肿内 T 细胞定位和功能的分子调控
  • 批准号:
    10351422
  • 财政年份:
    2022
  • 资助金额:
    $ 56.07万
  • 项目类别:
Project 1: Dissecting Persistent Virus Reservoirs in Tissues
项目 1:剖析组织中的持久病毒库
  • 批准号:
    10460076
  • 财政年份:
    2022
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting Sex-Specific Metabolic Responses to Inflammation
剖析性别特异性对炎症的代谢反应
  • 批准号:
    10449694
  • 财政年份:
    2022
  • 资助金额:
    $ 56.07万
  • 项目类别:
Dissecting the Role of Donor CCR2- Macrophages During Acute Cellular Rejection After Heart Transplantation
剖析供体 CCR2-巨噬细胞在心脏移植后急性细胞排斥过程中的作用
  • 批准号:
    10449753
  • 财政年份:
    2022
  • 资助金额:
    $ 56.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了