Mechanism and design of a pH sensor at the organelle-cytoskeleton interface
细胞器-细胞骨架界面pH传感器的机理和设计
基本信息
- 批准号:BB/W005581/1
- 负责人:
- 金额:$ 100.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cells possess many specialised components that must be in the right place at the right time to fulfil their functions. After their use, these components must be transported away for recycling or degradation. In addition, cells must be able to adapt their organisation to meet functional demands or respond to changes in their environment. Mis-regulation or disruption of these transport processes can contribute to human diseases ranging from neurodegenerative conditions such as Alzheimer's disease to cancer. Also, the natural transport systems of the cell can be 'hijacked' during viral infections by HIV-1 or bacterial infections such as Salmonella. Therefore, interrogating these transport systems and processes is key to understanding the natural workings of cells, diseases and infections. To move components around, cells use a transport system composed of a network of cables known as microtubules. Much like a railway network, these cables link together regions of the cell. Cells also possess 'vehicles' that travel along this network known as motor proteins. On of the most important of these motors, kinesin-1, is the subject of our proposed study. Motor proteins can selectively attach to cellular components and move them on the microtubule network. They can also control the shape and organisation of the network itself by sliding the cables against one another. Despite the importance of motor proteins across many areas of cell biology, we lack a proper understanding of how complex machines like kinesin-1 are controlled. This proposal is all about understanding and exploiting this control within cells. We have made preliminary observations that suggest a new and unexplored factor in the control mechanism. This is the balance between acidity and alkalinity of the cell (its pH), which appears to control activity of the kinesin-1 motor, and so controls cellular organisation. This is important because changes in pH occur when cells gain or lack nutrients, cellular components are damaged, and, in cancer, where tumours generate a local acidic environment. We will also explore whether this 'pH-dependence' can be exploited to develop drug-like molecules that disrupt cells in these contexts. Our approach is unique. This joint proposal stems from a new and successful collaboration between the Dodding group in the School of Biochemistry and the Woolfson Group in the School of Chemistry of the University of Bristol. It combines two disciplines of cell biology and protein design, with each informing the other. Our fruitful collaborative work has highlighted important aspects of how kinesin-1 attaches to the cellular components it carries and how protein design and engineering can be used to obtain new insights into natural transport systems. Through this proposal, we ask how kinesin-1 senses pH, how this is translated into transport activities, and whether this can be manipulated using drug-like molecules. We seek to apply our knowledge emerging from this natural system to develop new protein-design or synthetic-biology approaches that will test our understanding and lead to the development of synthetic transport machines that function in living cells. The outcomes of the proposal will lead to a deeper understanding of protein motors and the cellular processes that they orchestrate. In turn, this may lead to advances in more-applied fields such as synthetic biology, biotechnology and medicine.
细胞具有许多特殊的成分,必须在正确的时间在正确的位置才能发挥其功能。在使用后,这些组件必须被运走以进行回收或降解。此外,细胞必须能够调整其组织,以满足功能需求或响应环境的变化。这些转运过程的错误调节或破坏可能导致人类疾病,从神经退行性疾病如阿尔茨海默病到癌症。此外,在HIV-1病毒感染或沙门氏菌等细菌感染期间,细胞的天然运输系统可能被“劫持”。因此,探究这些运输系统和过程是了解细胞、疾病和感染自然运作的关键。为了移动组件,细胞使用由称为微管的电缆网络组成的运输系统。就像铁路网一样,这些电缆将细胞的各个区域连接在一起。细胞还拥有沿着这个网络行进的“车辆”,称为马达蛋白。其中最重要的一个马达,驱动蛋白-1,是我们研究的主题。马达蛋白可以选择性地附着在细胞成分上,并在微管网络上移动它们。他们还可以通过滑动电缆来控制网络本身的形状和组织。尽管马达蛋白在细胞生物学的许多领域都很重要,但我们对驱动蛋白-1等复杂机器的控制方式缺乏适当的了解。这个提议是关于理解和利用细胞内的这种控制。我们已经做了初步的观察,提出了一个新的和未探索的因素的控制机制。这是细胞酸碱度(pH值)之间的平衡,似乎控制着驱动蛋白-1马达的活性,从而控制着细胞组织。这一点很重要,因为pH值的变化发生在细胞获得或缺乏营养、细胞成分受损以及癌症中肿瘤产生局部酸性环境时。我们还将探索这种“pH依赖性”是否可以用来开发在这些情况下破坏细胞的药物样分子。我们的方法是独一无二的。这项联合提案源于生物化学学院的Dodding小组和布里斯托大学化学学院的Woolfson小组之间新的成功合作。它结合了细胞生物学和蛋白质设计两个学科,每个学科都为另一个学科提供信息。我们富有成效的合作工作突出了驱动蛋白1如何附着于其携带的细胞组分以及蛋白质设计和工程如何用于获得对天然运输系统的新见解的重要方面。通过这个提议,我们想知道驱动蛋白1是如何感知pH的,这是如何转化为运输活动的,以及这是否可以使用药物样分子来操纵。我们寻求应用我们从这个自然系统中获得的知识来开发新的蛋白质设计或合成生物学方法,这些方法将测试我们的理解,并导致在活细胞中发挥作用的合成运输机器的发展。该提案的结果将使人们更深入地了解蛋白质马达及其协调的细胞过程。反过来,这可能会导致合成生物学,生物技术和医学等应用领域的进步。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular architecture of the autoinhibited kinesin-1 lambda particle
- DOI:10.1101/2022.04.28.489841
- 发表时间:2022-04
- 期刊:
- 影响因子:13.6
- 作者:Johannes F. Weijman;Sathish K. N. Yadav;K. Surridge;Jessica A. Cross;Ufuk Borucu;J. Mantell;D. Woolfson;C. Schaffitzel;M. P. Dodding
- 通讯作者:Johannes F. Weijman;Sathish K. N. Yadav;K. Surridge;Jessica A. Cross;Ufuk Borucu;J. Mantell;D. Woolfson;C. Schaffitzel;M. P. Dodding
Allosteric regulation of a molecular motor through de novo protein design
通过从头蛋白质设计对分子马达的变构调节
- DOI:10.1101/2023.10.17.562760
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cross J
- 通讯作者:Cross J
Intercellular Mitochondrial Transfer as a Rescue Mechanism in Response to Protein Import Failure
细胞间线粒体转移作为应对蛋白质导入失败的救援机制
- DOI:10.1101/2022.11.30.518494
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Needs H
- 通讯作者:Needs H
CryoET reveals actin filaments within platelet microtubules
CryoET 揭示血小板微管内的肌动蛋白丝
- DOI:10.1101/2023.11.24.568450
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Tsuji C
- 通讯作者:Tsuji C
Molecular architecture of the autoinhibited kinesin-1 lambda particle.
- DOI:10.1126/sciadv.abp9660
- 发表时间:2022-09-16
- 期刊:
- 影响因子:13.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Dodding其他文献
Mark Dodding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Dodding', 18)}}的其他基金
Mechanistic basis for co-operativity in kinesin-1 / cargo recognition
驱动蛋白-1/货物识别协同性的机制基础
- 批准号:
BB/S000917/1 - 财政年份:2019
- 资助金额:
$ 100.47万 - 项目类别:
Research Grant
The role of dynein-2 in building a functional cilium.
dynein-2 在构建功能性纤毛中的作用。
- 批准号:
BB/S005390/1 - 财政年份:2019
- 资助金额:
$ 100.47万 - 项目类别:
Research Grant
Cargo recognition by kinesin-1 and its role in activation of transport
驱动蛋白-1 的货物识别及其在运输激活中的作用
- 批准号:
BB/L006774/1 - 财政年份:2014
- 资助金额:
$ 100.47万 - 项目类别:
Research Grant
相似国自然基金
基于序列固定多肽的pH超敏荧光探针的
设计及其在肿瘤手术导航方面的应用
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于pH响应的智能防腐涂层设计制备及自修复抗紫外特性
- 批准号:CSTB2023NSCQ-MSX0474
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
光、pH值双响应水凝胶的设计构筑及其在慢性伤口治疗的应用探索
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
pH/酶双重响应型自适应性抗菌涂层的设计构建及作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于H-lycosin-I 的pH-敏感抗癌肽优化设计、表征及抗癌性能研究
- 批准号:2021JJ40335
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
具有pH反馈的稀土上转换荧光增强设计及其在植物细胞内的应用研究
- 批准号:12004312
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对T315I突变的Ph+白血病靶向Bcr/Abl多聚结构域与p53蛋白的双靶点蛋白药物设计与临床前研究
- 批准号:82003642
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
pH敏感荧光探针Setetrine的分子设计、结构解析与细胞器pH检测
- 批准号:32000855
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
体型核壳MoSx微结构逐级可控调制及双功能全pH电解水机制研究
- 批准号:52002359
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
中空 UCNPs@MoS2@MnO2 pH响应的上转换荧光成像引导的光热治疗研究
- 批准号:21961001
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Design of pH-responsive Peptide Assembly for Acid-activatable Antimicrobial Therapy
用于酸激活抗菌治疗的 pH 响应肽组装设计
- 批准号:
2341925 - 财政年份:2024
- 资助金额:
$ 100.47万 - 项目类别:
Standard Grant
Hypoxia and pH Responsive Nanoparticles for Targeted Drug Delivery to Ischemic Stroke
用于缺血性中风靶向药物输送的缺氧和 pH 响应纳米颗粒
- 批准号:
10681846 - 财政年份:2023
- 资助金额:
$ 100.47万 - 项目类别:
Cardiac chloride and pH regulation in health and disease
健康和疾病中的心氯和 pH 调节
- 批准号:
10586799 - 财政年份:2023
- 资助金额:
$ 100.47万 - 项目类别:
Computationally Guided Approach to Produce Ratiometric Probes Operating in the Red to Near-infrared Region to Accurately Determine pH Levels within Organelles
计算引导方法生产在红色至近红外区域运行的比率探针,以准确确定细胞器内的 pH 水平
- 批准号:
10796036 - 财政年份:2023
- 资助金额:
$ 100.47万 - 项目类别:
Micro-pHAT: A re-envisioned sensor design for measuring seawater pH and Total Alkalinity in situ
Micro-pHAT:一种重新设想的传感器设计,用于原位测量海水 pH 值和总碱度
- 批准号:
2219930 - 财政年份:2022
- 资助金额:
$ 100.47万 - 项目类别:
Standard Grant
Altered pH in early Alzheimer's disease detected by creatine chemical exchange saturation transfer MRI
通过肌酸化学交换饱和转移 MRI 检测到早期阿尔茨海默氏病 pH 值的改变
- 批准号:
10337352 - 财政年份:2022
- 资助金额:
$ 100.47万 - 项目类别:
Assaying and controlling the kidney cell function using a genetically encoded pH-sensor
使用基因编码的 pH 传感器测定和控制肾细胞功能
- 批准号:
10682466 - 财政年份:2022
- 资助金额:
$ 100.47万 - 项目类别:
pH-sensitive materials responding to metabolic activities of cariogenic plaque
响应致龋菌斑代谢活动的 pH 敏感材料
- 批准号:
10457152 - 财政年份:2021
- 资助金额:
$ 100.47万 - 项目类别:
The role of pH and iron in co-regulating replication and expression of virulence factors in Coxiella burnetii
pH 值和铁在共同调节伯氏柯克斯体毒力因子复制和表达中的作用
- 批准号:
9911243 - 财政年份:2020
- 资助金额:
$ 100.47万 - 项目类别:
pH-sensitive materials responding to metabolic activities of cariogenic plaque
响应致龋菌斑代谢活动的 pH 敏感材料
- 批准号:
10043261 - 财政年份:2020
- 资助金额:
$ 100.47万 - 项目类别: