How the ESCRT-III-like protein Vipp1 assembles polymeric super-structures to mitigate membrane stress
ESCRT-III 样蛋白 Vipp1 如何组装聚合超结构以减轻膜应力
基本信息
- 批准号:BB/W008181/1
- 负责人:
- 金额:$ 89.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In all living systems, membranes are used to separate the inside of the cell from the outside environment. Membranes are also used to shape cells internally so that different areas can form specialist compartments with distinct roles. In cells, membranes are dynamic requiring continual remodelling for many processes including cell division for growth or membrane trafficking for the movement of cargo. In order to remodel the membrane, cells have evolved specialist protein families to undertake this physical work.One of the most important membrane remodelling families are ESCRT-III proteins. They are universal in eukaryotes (cells like our own). ESCRT-III proteins are so ancient that they have ancestors in some archaea from which eukaryotes later evolved. Recently, in an exciting discovery, we showed that ESCRT-III proteins also exist in bacteria (PspA) and in cyanobacteria (Vipp1). This is important as it showed that an ESCRT-III-like protein was present in the last universal common ancestor of all cells (LUCA) and that all evolutionary domains including bacteria, archaea and eukaryotes have depended on ESCRT-III-like proteins to shape membrane since the earliest attempts at life.ESCRT-III-like proteins undertake many essential functions. In humans, they are essential for the final separation of dividing cells and membrane repair. They are also implicated in many diseases including viral invasion, bacterial infection, cancer and neurodegeneration such as dementia and Huntington's disease. Due to its role in membrane protection, PspA is a driver of anti-microbial resistance (AMR) and bacterial pathogenesis.In this proposal we study Vipp1, which is found in all cyanobacteria, algae and plants. We know that Vipp1 is important as gene knockout is usually lethal. This is due to abnormal formation of the thylakoid membranes where photosynthesis is undertaken. What we still do not know is what Vipp1 does in the cell and what its membrane remodelling duties are. Currently, we think that Vipp1 proteins assemble together to build superstructures that include rings, helical filaments and flat scaffolds that somehow shape and support membrane possibly in regions of high stress where the integrity of the membrane is physically or chemically threatened. The overall goal of this proposal is to understand the mechanism for how Vipp1 builds these superstructures and uses them to do mechanical work on the membrane. Vipp1 also represents a tractable system which can show us the universal mechanistic principles underlying how PspA and more complicated ESCRT-III systems work and cause disease. Finally, Vipp1 modification in engineered cyanobacteria facilitates high yields of fatty acids for both nutritional and anti-inflammatory use. In future biotechnological application, similar Vipp1 modification may facilitate the production of other useful molecules such as biofuels in cyanobacteria.Aims:1) to understand how Vipp1 builds and switches between different superstructures so as to shape, stabilise and repair membrane. Specifically, a powerful form of electron microscopy will allow us to visualize the precise position of the Vipp1 atoms within helical filaments so we can learn about their 3D structure and chemistry. 2D planar filament architecture when attached to membrane will be deduced at lower resolution. Understanding how Vipp1 builds different structural forms lies at the heart of its membrane remodelling capabilities.2) to explore how Vipp1 superstructures have the ability to sculpt membrane in a simplified 'in vitro' environment. By mixing Vipp1 with both membrane and Vipp1 binding proteins (VBPs), we aim to reconstitute any membrane cutting, joining or stabilising events that may represent what Vipp1 does in the cell.3) to find other proteins in the cell that attach to Vipp1 and changes how it functions. Such VBPs may shift the way Vipp1 builds or disassembles superstructures and how it remodels membrane.
在所有的生命系统中,膜被用来将细胞内部与外部环境分开。细胞膜也被用来在内部塑造细胞,这样不同的区域就可以形成具有不同作用的专门隔室。在细胞中,膜是动态的,需要不断的重塑许多过程,包括细胞分裂生长或运输货物的膜运输。为了重塑细胞膜,细胞进化出专门的蛋白质家族来承担这项体力工作。最重要的膜重塑家族之一是ESCRT-III蛋白。它们在真核生物(像我们自己的细胞)中是普遍存在的。ESCRT-III蛋白非常古老,它们的祖先存在于一些古生菌中,真核生物后来从这些古生菌进化而来。最近,在一个令人兴奋的发现中,我们发现ESCRT-III蛋白也存在于细菌(PspA)和蓝藻(Vipp1)中。这一点很重要,因为它表明,在所有细胞的最后一个普遍共同祖先(LUCA)中存在一种escrt - iii样蛋白,并且所有的进化领域,包括细菌、古生菌和真核生物,自生命最早的尝试以来,都依赖于escrt - iii样蛋白来塑造膜。escrt - iii样蛋白承担许多基本功能。在人类中,它们对分裂细胞的最终分离和膜修复至关重要。它们还与许多疾病有关,包括病毒入侵、细菌感染、癌症和神经变性,如痴呆和亨廷顿氏病。由于其在膜保护中的作用,PspA是抗微生物耐药性(AMR)和细菌发病机制的驱动因素。在这个提议中,我们研究Vipp1,它存在于所有的蓝藻、藻类和植物中。我们知道Vipp1很重要,因为基因敲除通常是致命的。这是由于进行光合作用的类囊体膜的异常形成。我们仍然不知道的是Vipp1在细胞中的作用以及它的膜重塑功能是什么。目前,我们认为Vipp1蛋白聚集在一起构建包括环、螺旋丝和扁平支架在内的超结构,这些超结构以某种方式塑造和支撑膜,可能在膜的完整性受到物理或化学威胁的高应力区域。本提案的总体目标是了解Vipp1如何构建这些上层结构并利用它们在膜上进行机械工作的机制。Vipp1也代表了一个可处理的系统,它可以向我们展示PspA和更复杂的ESCRT-III系统如何工作和导致疾病的普遍机制原理。最后,工程蓝藻中的Vipp1修饰促进了营养和抗炎脂肪酸的高产。在未来的生物技术应用中,类似的Vipp1修饰可能会促进蓝藻生物燃料等其他有用分子的生产。目的:1)了解Vipp1如何在不同上层结构之间构建和切换,从而形成、稳定和修复膜。具体来说,一种强大的电子显微镜将使我们能够可视化Vipp1原子在螺旋细丝中的精确位置,这样我们就可以了解它们的3D结构和化学成分。在较低的分辨率下,可以推导出附着在膜上的二维平面细丝结构。了解Vipp1如何构建不同的结构形式是其膜重塑能力的核心。2)探索Vipp1超结构如何在简化的“体外”环境中雕刻膜。通过将Vipp1与膜和Vipp1结合蛋白(VBPs)混合,我们的目标是重建任何可能代表Vipp1在细胞中所做的膜切割、连接或稳定事件。3)在细胞中寻找附着在Vipp1上并改变其功能的其他蛋白质。这样的vbp可能会改变Vipp1构建或拆卸上层结构的方式,以及它如何重塑膜。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism for Vipp1 spiral formation, ring biogenesis and membrane repair
- DOI:10.1101/2023.09.26.559607
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Souvik Naskar;Andrea Merino;Javier Espadas;Jayanti Singh;Aurélien Roux;A. Colom;Harry H Low
- 通讯作者:Souvik Naskar;Andrea Merino;Javier Espadas;Jayanti Singh;Aurélien Roux;A. Colom;Harry H Low
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Low其他文献
Harry Low的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
猪流行性腹泻病毒通过宿主ESCRT组分
ALIX介导病毒双膜囊泡形成的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于GSDMD-ESCRT信号通路探讨结直肠癌发病机制及参苓白术散干预机制
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
UEV-Vps23介导阿斯加德古菌ESCRT泛素化过程的分子机制研究
- 批准号:32370004
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
植物ESCRT亚基TSG101调控病毒细胞内移动的分子机制研究
- 批准号:32302318
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRRSV利用ESCRT-II亚基EAP20促进复制转录复合体形成的分子机制研究
- 批准号:32302852
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脑缺血/再灌注时ESCRT-III抗神经细胞铁自噬-铁死亡机制及药物干预研究
- 批准号:2023JJ40514
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
ACTG1经ERK-ESCRT信号通路促胰腺癌进展的研究
- 批准号:CSTB2023NSCQ-MSX0182
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
GRB2/Clathrin/ESCRT介导的内吞、运输及溶酶体降解在CD7 CAR-T细胞诱导T细胞CD7阴性表达的机制研究
- 批准号:82270234
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
ESCRT介导狂犬病毒出芽的在体结构研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
NEPhos_Phosphoregulation of ESCRT-III during nuclear envelope reformation
NEPhos_ESCRT-III 核膜重构过程中的磷酸调节
- 批准号:
EP/Z00098X/1 - 财政年份:2025
- 资助金额:
$ 89.01万 - 项目类别:
Fellowship
Mechanisms of impaired ESCRT-III nuclear surveillance in ALS/FTD
ALS/FTD 中 ESCRT-III 核监测受损的机制
- 批准号:
10705390 - 财政年份:2023
- 资助金额:
$ 89.01万 - 项目类别:
Role of VPS4A and ESCRT-III in terminal erythropoiesis
VPS4A 和 ESCRT-III 在终末红细胞生成中的作用
- 批准号:
10685320 - 财政年份:2022
- 资助金额:
$ 89.01万 - 项目类别:
Role of VPS4A and ESCRT-III in terminal erythropoiesis
VPS4A 和 ESCRT-III 在终末红细胞生成中的作用
- 批准号:
10523545 - 财政年份:2022
- 资助金额:
$ 89.01万 - 项目类别:
Non-endosomal roles of ESCRT-III in yeast
ESRT-III 在酵母中的非内体作用
- 批准号:
323811034 - 财政年份:2016
- 资助金额:
$ 89.01万 - 项目类别:
Research Grants
Regulation of ESCRT-III activity in yeast
酵母中 ESCRT-III 活性的调节
- 批准号:
10386800 - 财政年份:2014
- 资助金额:
$ 89.01万 - 项目类别:
ESCRT-III and MIT Protein Complexes in Cytokinesis
细胞分裂中的 ESCRT-III 和 MIT 蛋白质复合物
- 批准号:
9304285 - 财政年份:2014
- 资助金额:
$ 89.01万 - 项目类别:














{{item.name}}会员




