Biophysical and Structural Analysis of Recombination Repair Proteins
重组修复蛋白的生物物理和结构分析
基本信息
- 批准号:BB/W01355X/1
- 负责人:
- 金额:$ 93.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Our genomic material, DNA, is continually attacked by agents in the environment (radiation, pollution), chemicals that we ingest in our diet, and it also shows an inherent instability as it is replicated, or transcribed, or divided during cell division. Indeed, it is estimated that a single human cell will suffer more than 70,000 single strand breaks or base damages, and around 20 double strand breaks, each day. Without efficient repair, these lesions in DNA will accumulate and lead to diseases such as cancer or progressive neurodegenerative disorders. To cope with such high levels of damage, our cells are therefore equipped with a number of DNA repair mechanisms, each of which is specialised to target and remove different types of lesions.However, many individuals carry inheritable mutations that affect the efficiency of these DNA repair pathways. For example, individuals with mutations in the BRCA1, BRCA2, PALB2, or RAD51 paralog genes, are predisposed to breast and ovarian cancers which occur with a high frequency. Mutations in the same genes can also cause Fanconi anemia, a genetic disorder characterised by congenital abnormalities, progressive bone marrow failure and predisposition to head, neck and blood cancers. These genes encode proteins that promote the repair of DNA double-strand breaks, which represent possibly the most dangerous form of damage, as their inefficient repair can lead to DNA translocations or loss of part of a chromosome. This proposal aims to provide new insights into the mechanisms of DNA double-strand break repair, through structural, biophysical and biochemical analysis of some of the key factors in the process. In particular, we will determine the near atomic structure of RAD52, both alone and bound to DNA, and also that of a RAD51 paralog complex composed of four proteins, RAD51B, RAD51C, RAD51D and XRCC2 (abbreviated to BCDX2). These factors are key players in homologous recombinational repair, the process that promotes the repair of DNA double strand breaks, and are important for cancer avoidance. The structural analyses will be supported by mechanistic analyses (biophysical and biochemical) that will shed new light into their mechanism of action. Together, our studies will provide detailed insights into why patient-derived mutations in these important repair factors lead to human disease. The structures of these proteins will be determined using a state-of-the-art technique called cryo-electron microscopy (cryo-EM). To do this, the proteins we are interested in will be purified away from all other cellular components, and then frozen in ice so that they can be bombarded with electrons to produce microscope images of individual molecules. These are used to reconstruct the 3D shape, or structure, of the molecule. Once we know their structure, we can start to understand why mutations compromise their activity and cause human disease. At the Francis Crick Institute, which opened in 2015 and represents the largest biomedical research facility in Europe, we are fortunate to have one of the most powerful microscopes, and superb technical backup, that will enable us to bring these studies to fruition.
我们的基因组物质,DNA,不断受到环境中的因素(辐射,污染),我们在饮食中摄入的化学物质的攻击,并且在细胞分裂期间复制,转录或分裂时也显示出固有的不稳定性。事实上,据估计,单个人类细胞每天将遭受超过70,000次单链断裂或碱基损伤,以及大约20次双链断裂。如果没有有效的修复,DNA中的这些损伤将积累并导致疾病,如癌症或进行性神经退行性疾病。为了科普如此高水平的损伤,我们的细胞因此配备了许多DNA修复机制,每一种机制都专门针对并消除不同类型的病变。然而,许多个体携带遗传突变,影响这些DNA修复途径的效率。例如,BRCA 1、BRCA 2、PALB 2或RAD 51等位基因突变的个体易患乳腺癌和卵巢癌,这些癌症的发生频率很高。相同基因的突变也会导致范可尼贫血,这是一种遗传性疾病,其特征是先天性异常,进行性骨髓衰竭和易患头颈癌和血癌。这些基因编码促进DNA双链断裂修复的蛋白质,这可能是最危险的损伤形式,因为它们的低效修复可能导致DNA易位或染色体部分丢失。该提案旨在通过对DNA双链断裂修复过程中的一些关键因素进行结构、生物物理和生物化学分析,为DNA双链断裂修复机制提供新的见解。特别地,我们将确定单独的和与DNA结合的RAD 52的近原子结构,以及由四种蛋白质,RAD 51 B,RAD 51 C,RAD 51 D和XRCC 2(缩写为BCDX 2)组成的RAD 51蛋白复合物的近原子结构。这些因子是同源重组修复中的关键参与者,该过程促进DNA双链断裂的修复,并且对于避免癌症很重要。结构分析将得到机制分析(生物物理和生物化学)的支持,这将为它们的作用机制提供新的解释。总之,我们的研究将提供详细的见解,为什么这些重要的修复因子中的患者源性突变会导致人类疾病。这些蛋白质的结构将使用称为冷冻电子显微镜(cryo-EM)的最先进技术来确定。为了做到这一点,我们感兴趣的蛋白质将从所有其他细胞成分中纯化出来,然后冷冻在冰中,这样它们就可以被电子轰击,产生单个分子的显微镜图像。这些用于重建分子的3D形状或结构。一旦我们知道它们的结构,我们就可以开始理解为什么突变会损害它们的活性并导致人类疾病。弗朗西斯克里克研究所于2015年开业,是欧洲最大的生物医学研究机构,我们有幸拥有最强大的显微镜之一,以及一流的技术支持,这将使我们能够实现这些研究。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein.
全长人 BRCA2 蛋白直接和扩散辅助 RAD51 成核的可视化。
- DOI:10.25418/crick.24006912
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Belan O
- 通讯作者:Belan O
Structure and function of the RAD51B-RAD51C-RAD51D-XRCC2 tumour suppressor.
- DOI:10.1038/s41586-023-06179-1
- 发表时间:2023-07
- 期刊:
- 影响因子:64.8
- 作者:Greenhough LA;Liang CC;Belan O;Kunzelmann S;Maslen S;Rodrigo-Brenni MC;Anand R;Skehel M;Boulton SJ;West SC
- 通讯作者:West SC
Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein
- DOI:10.1016/j.molcel.2023.06.031
- 发表时间:2023-07
- 期刊:
- 影响因子:16
- 作者:O. Beláň;Luke A. Greenhough;L. Kuhlen;Roopesh Anand;Artur Kaczmarczyk;D. Gruszka;H. Yardimci;Xiaodong Zhang;David S. Rueda;S. West;S. Boulton
- 通讯作者:O. Beláň;Luke A. Greenhough;L. Kuhlen;Roopesh Anand;Artur Kaczmarczyk;D. Gruszka;H. Yardimci;Xiaodong Zhang;David S. Rueda;S. West;S. Boulton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen West其他文献
Injuries in Elite Men’s Rugby Union: An Updated (2012–2020) Meta-Analysis of 11,620 Match and Training Injuries
- DOI:
10.1007/s40279-021-01603-w - 发表时间:
2021-12-02 - 期刊:
- 影响因子:9.400
- 作者:
Sean Williams;Charli Robertson;Lindsay Starling;Carly McKay;Stephen West;James Brown;Keith Stokes - 通讯作者:
Keith Stokes
Comparing fine-grained performance on the Ambric MPPA against an FPGA
将 Ambric MPPA 与 FPGA 的细粒度性能进行比较
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
B. Hutchings;B. Nelson;Stephen West;Reed Curtis - 通讯作者:
Reed Curtis
Does cardiopulmonary resuscitation before donor death affect solid organ transplant function? A systematic review and emmeta/em-analysis
在供体死亡前进行心肺复苏是否会影响实体器官移植功能?一项系统综述和荟萃分析
- DOI:
10.1016/j.resuscitation.2025.110654 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.600
- 作者:
Claudio Sandroni;Tommaso Scquizzato;Sofia Cacciola;Matteo Aldo Bonizzoni;Stephen West;Sonia D’Arrigo;Jasmeet Soar;International Liaison Committee on Resuscitation ILCOR Advanced Life Support Task Force - 通讯作者:
International Liaison Committee on Resuscitation ILCOR Advanced Life Support Task Force
The viability of transplanting organs from donors who underwent cardiopulmonary resuscitation: A systematic review.
接受心肺复苏的捐献者移植器官的可行性:系统评价。
- DOI:
10.1016/j.resuscitation.2016.07.229 - 发表时间:
2016 - 期刊:
- 影响因子:6.5
- 作者:
Stephen West;J. Soar;C. Callaway - 通讯作者:
C. Callaway
G51D mutation of the endogenous rat Snca gene disrupts synaptic localisation of α-synuclein priming for Lewy-like pathology
内源性大鼠 Snca 基因的 G51D 突变破坏了 α-突触核蛋白引发路易样病理学的突触定位
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stephen West;Ammar Natalwala;K. S. Dolt;Douglas J. Lamont;Melanie McMillan;Kelvin Luk;Tomoji Mashimo;T. Kunath - 通讯作者:
T. Kunath
Stephen West的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen West', 18)}}的其他基金
Theoretical Studies of Elementary Particles
基本粒子的理论研究
- 批准号:
ST/P000789/1 - 财政年份:2017
- 资助金额:
$ 93.54万 - 项目类别:
Research Grant
Theoretical Particle Physics Consortium Sussex - Royal Holloway
理论粒子物理联盟苏塞克斯 - 皇家霍洛威学院
- 批准号:
ST/L000512/1 - 财政年份:2014
- 资助金额:
$ 93.54万 - 项目类别:
Research Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Biophysical and structural analysis of the herpesviral nuclear budding machinery
疱疹病毒核出芽机制的生物物理和结构分析
- 批准号:
10159089 - 财政年份:2019
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical and structural analysis of the herpesviral nuclear budding machinery
疱疹病毒核出芽机制的生物物理和结构分析
- 批准号:
10415170 - 财政年份:2019
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical and structural analysis of the herpesviral nuclear budding machinery
疱疹病毒核出芽机制的生物物理和结构分析
- 批准号:
10646492 - 财政年份:2019
- 资助金额:
$ 93.54万 - 项目类别:
Structural, biochemical and biophysical analysis of DisA and DAC-domain proteins
DisA 和 DAC 结构域蛋白的结构、生化和生物物理分析
- 批准号:
218802008 - 财政年份:2012
- 资助金额:
$ 93.54万 - 项目类别:
Research Grants
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
7918610 - 财政年份:2009
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
7441162 - 财政年份:2008
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
8579493 - 财政年份:2008
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
7922636 - 财政年份:2008
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
8529851 - 财政年份:2008
- 资助金额:
$ 93.54万 - 项目类别:
Biophysical, Structural and Functional Analysis of Mechanosensitive Channels
机械敏感通道的生物物理、结构和功能分析
- 批准号:
8728920 - 财政年份:2008
- 资助金额:
$ 93.54万 - 项目类别: