A broadly accessible facility microscope to probe nanoscale cellular dynamics by combined live cell super-resolution microscopy and photomanipulation

一种广泛使用的设施显微镜,通过结合活细胞超分辨率显微镜和光操作来探测纳米级细胞动力学

基本信息

  • 批准号:
    BB/W020300/1
  • 负责人:
  • 金额:
    $ 93.27万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

Microscopy is a cornerstone of modern biological research because it enables visualisation of the dynamics of life at the subcellular level. Microscopy has led to breakthroughs in every area of biology, but it has traditionally been constrained by the diffraction limit, a 250 nm resolution barrier that was until recently thought insurmountable. Over the past few decades, super-resolution microscopy techniques have been developed that allow us to visualise cells and their inner workings far beyond the diffraction limit. Super-resolution microscopes allow observation of cellular organization and dynamics at the nanometre scale, and have revealed biologically critical, previously invisible, cellular organization in bacteria, plants and animals. At the University of Warwick, we have world class researchers across the institution investigating areas pivotal for the future of our economy and health, such as antibiotic resistance, food security and aging. As cells are highly dynamic, the ability to perform high speed super-resolution measurements directly in live cells is an essential tool in cutting edge cell biology research. This critical capability is currently lacking at the University of Warwick. We have defined several complementary live cell super-resolution microscopy capabilities which would enhance the research capabilities of a large number of groups at University of Warwick: - The ability to image at a resolution of 100 nm or better, because many cellular components, such as cytoskeletal elements or cellular organelles, are organized on this scale. - The ability to image at high speed to capture dynamic processes, as the movements of molecules and organelles in the cell can be extremely fast. - The ability to image cells with low laser illumination - most cells are highly photosensitive. Excessive light dose in microscopy experiments damages cells - just like sunburn in humans - and confounds experiments due to activation of unwanted cellular responses. - The ability to selectively photomanipulate fluorescent proteins in a controlled region. The cell is a dense, crowded environment which hampers the ability to track specific proteins or cellular structures. Photomanipulation techniques enable us to isolate specific proteins within the dense cellular environment by either highlighting them or photobleaching their surroundings. The movement of highlighted proteins within dense regions can then be revealed and followed over time. We request funds to purchase a Zeiss Lattice Structured Illumination Microscope (SIM^2) system with all these capabilities. We will establish this instrument at the University of Warwick School of Life Sciences Imaging Facility. We will provide user-friendly access to a wide local user base, as well as providing national access to the system. The proposed microscope will address our current capabilities gap in live cell super-resolution microscopy and give us nationally unique capabilities for joint lattice-SIM imaging and photomanipulation. The system will also enhance UK bioscience research capabilities as we will provide and promote national access to this instrument.
显微镜是现代生物学研究的基石,因为它可以在亚细胞水平上可视化生命的动态。显微镜在生物学的各个领域都取得了突破,但它传统上受到衍射极限的限制,这是一个直到最近才被认为是无法克服的250 nm分辨率障碍。在过去的几十年里,超分辨率显微镜技术已经发展起来,使我们能够可视化细胞及其内部运作远远超过衍射极限。超分辨率显微镜允许在纳米尺度上观察细胞组织和动态,并揭示了细菌,植物和动物中生物学上至关重要的,以前不可见的细胞组织。在沃里克大学,我们拥有世界一流的研究人员,他们正在研究对我们经济和健康未来至关重要的领域,如抗生素耐药性、食品安全和老龄化。由于细胞是高度动态的,直接在活细胞中进行高速超分辨率测量的能力是尖端细胞生物学研究的重要工具。沃里克大学目前缺乏这一关键能力。我们已经定义了几个互补的活细胞超分辨率显微镜的能力,这将提高在沃里克大学的大量的小组的研究能力:-在100纳米或更好的分辨率图像的能力,因为许多细胞成分,如细胞骨架元素或细胞器,在这个规模上组织。- 能够高速成像以捕捉动态过程,因为细胞中分子和细胞器的运动可以非常快。- 在低激光照射下对细胞成像的能力-大多数细胞都是高度感光的。显微镜实验中过量的光剂量会损害细胞-就像人类的晒伤一样-并由于激活不必要的细胞反应而混淆实验。- 在受控区域内选择性光操纵荧光蛋白的能力。细胞是一个密集、拥挤的环境,这阻碍了追踪特定蛋白质或细胞结构的能力。光操纵技术使我们能够通过突出显示它们或光漂白它们的周围环境来分离致密细胞环境中的特定蛋白质。然后可以揭示并随着时间的推移跟踪致密区域内突出显示的蛋白质的运动。我们申请资金购买具有所有这些功能的蔡司晶格结构照明显微镜(SIM^2)系统。我们将在沃里克大学生命科学学院的成像设施中建立这种仪器。我们将向广大的当地用户群提供方便用户的访问,并向全国提供该系统的访问。拟议中的显微镜将解决我们目前在活细胞超分辨率显微镜方面的能力差距,并为我们提供全国独特的联合晶格SIM成像和光操纵能力。该系统还将提高联合王国的生物科学研究能力,因为我们将提供和促进国家使用这一工具。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis
  • DOI:
    10.1038/s41564-024-01650-9
  • 发表时间:
    2024-03-13
  • 期刊:
  • 影响因子:
    28.3
  • 作者:
    Whitley,Kevin D.;Grimshaw,James;Holden,Seamus
  • 通讯作者:
    Holden,Seamus
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seamus Holden其他文献

Einzelmolekül‐DNA‐Biosensoren zur Detektion von Proteinen und Liganden
蛋白质和配体检测的单分子 DNA 生物传感器
  • DOI:
    10.1002/ange.200904597
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantinos Lymperopoulos;R. Crawford;Joseph P. Torella;Michael Heilemann;Ling Chin Hwang;Seamus Holden;Achillefs N. Kapanidis
  • 通讯作者:
    Achillefs N. Kapanidis
Super-Resolution Fluorescence Microscopy of Transcription Sites in E. Coli
  • DOI:
    10.1016/j.bpj.2011.11.1256
  • 发表时间:
    2012-01-31
  • 期刊:
  • 影响因子:
  • 作者:
    Kieran R. Finan;Mike Heilemann;Ulrike Endesfelder;Seamus Holden;Peter R. Cook;Achilles Kapanidis
  • 通讯作者:
    Achilles Kapanidis

Seamus Holden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seamus Holden', 18)}}的其他基金

EVALUATING ELONGASOME TUG-OF-WAR AS A KEY REGULATOR OF BACTERIAL CELL WALL SYNTHESIS
评估延长体拔河作用作为细菌细胞壁合成的关键调节因子
  • 批准号:
    BB/X001482/1
  • 财政年份:
    2023
  • 资助金额:
    $ 93.27万
  • 项目类别:
    Research Grant
A single cell, single molecule microscopy platform for antibiotics research
用于抗生素研究的单细胞、单分子显微镜平台
  • 批准号:
    BB/T017570/1
  • 财政年份:
    2020
  • 资助金额:
    $ 93.27万
  • 项目类别:
    Research Grant

相似海外基金

Making women's options for HIV prevention in Tanzania accessible and joining implementation science capacity building (MWOTAJI)
为坦桑尼亚妇女提供预防艾滋病毒的选择并参与实施科学能力建设 (MWOTAJI)
  • 批准号:
    10749077
  • 财政年份:
    2023
  • 资助金额:
    $ 93.27万
  • 项目类别:
New tools for highly accessible single cell RNA sequencing
易于使用的单细胞 RNA 测序新工具
  • 批准号:
    10394664
  • 财政年份:
    2022
  • 资助金额:
    $ 93.27万
  • 项目类别:
New tools for highly accessible single cell RNA sequencing
易于使用的单细胞 RNA 测序新工具
  • 批准号:
    10579927
  • 财政年份:
    2022
  • 资助金额:
    $ 93.27万
  • 项目类别:
Data Core
数据核心
  • 批准号:
    10594339
  • 财政年份:
    2022
  • 资助金额:
    $ 93.27万
  • 项目类别:
Development of a novel OTC naloxone product to be affordably priced and widely accessible
开发一种价格实惠且易于使用的新型非处方纳洛酮产品
  • 批准号:
    10400589
  • 财政年份:
    2021
  • 资助金额:
    $ 93.27万
  • 项目类别:
PFI-RP: Smart and Accessible Transportation Hub for Assistive Navigation and Facility Management
PFI-RP:用于辅助导航和设施管理的智能无障碍交通中心
  • 批准号:
    1827505
  • 财政年份:
    2018
  • 资助金额:
    $ 93.27万
  • 项目类别:
    Standard Grant
Making glycoproteomics via mass spectrometry more accessible to the greater scientific community
让广大科学界更容易利用质谱法进行糖蛋白组学
  • 批准号:
    9893341
  • 财政年份:
    2016
  • 资助金额:
    $ 93.27万
  • 项目类别:
Core C: Data Analytics Core
核心 C:数据分析核心
  • 批准号:
    10708848
  • 财政年份:
    2016
  • 资助金额:
    $ 93.27万
  • 项目类别:
Making glycoproteomics via mass spectrometry more accessible to the greater scientific community
让更广泛的科学界更容易利用质谱法进行糖蛋白组学
  • 批准号:
    9334156
  • 财政年份:
    2016
  • 资助金额:
    $ 93.27万
  • 项目类别:
Making glycoproteomics via mass spectrometry more accessible to the greater scientific community
让更广泛的科学界更容易利用质谱法进行糖蛋白组学
  • 批准号:
    9165180
  • 财政年份:
    2016
  • 资助金额:
    $ 93.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了