Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity

生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用

基本信息

  • 批准号:
    BB/X002810/1
  • 负责人:
  • 金额:
    $ 57.93万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum mechanics is the fundamental theory that describes the behaviour of nanoscale systems. In the past three decades, we have seen a growing number of manifestations of quantum mechanical effects in a variety of biomolecular systems connected to essential biological functions. In photosynthesis, long-lived vibrational coherences have been detected for light-harvesting photosynthetic complexes. Such unexpected long-living quantum coherence at room temperature confers remarkable energy transfer efficiencies to natural photosynthetic complexes. In avian navigation, photo-generation of a radical pair inside a cryptochrome protein is exploited as a mechanism of magnetoreception. The time the radical pair stays in a singlet (inactive) or a triplet (active) spin state is influenced by the direction of the weak terrestrial magnetic field. This is exploited as a precise compass in many bird species and plants. The above mentioned radical pair mechanism offers also scientific foundations to explain the production and control of Reactive Oxygen Species (ROS), with essential roles in cell signalling and homeostasis.The above cases provide a quick survey of examples in the emerging field of Quantum Biology, which extends to other very different areas such as olfaction, cognition, DNA oxidative damage, etc. The most striking point in all the above examples is not just the manifestation of quantum mechanics itself, which arises when studying the biological system down to the molecular level, but in how nature has evolved to control such molecular-scale processes to fulfil vital functions. Understanding how nature orchestrate quantum mechanical processes to its advantage is of much relevance to the current quantum technology era.The above examples have taught us about the unexpected important role of the electronic spin in biological processes. This project proposes to study a new quantum biological effect based on the electron spin whose impact extends to all chiral redox biomolecular systems. The key underlying mechanism is based on the Chirality-Induced Spin Selectivity (CISS), which refers the inherent ability of chiral molecular structures to select one particular component of electronic spin, thereby leading to spin polarization. When an electric current flows through a chiral molecular system, the transient electrons experience a degree of spin polarization similar to what occurs in a standard magnetic device under applied magnetic fields. The CISS effect presents two essential ingredients relevant to biology; (1) it occurs at room temperature and (2) operates in the absence of external magnetic fields. The translation of the CISS effect into biology means a chiral peptide scaffold surrounding a redox co-factor acts as a "smart matrix" which magnetically prepares the spin of the crossing electrons going into the redox centre.Our working team brings a unique theoretical-experimental approach combining advanced single-peptide/protein electrical characterization and the latest developments in the theory of spin-polarized electron transport. Using this synergistic approach, this consortium has already demonstrated exceedingly large electron spin polarization (>60%) in an individual 3 nanometres long alpha-helical peptide sequence trapped in a controlled nanoscale gap immersed in a physiological medium. This project builds upon these outstanding results to (1) generate an atomistic picture of the CISS effect in a helical peptide, (2) quantify the impact of (1) in the charge transport across a redox protein, and (3) study the CISS effect on a redox enzymatic reaction. We anticipate our results will open a new area in quantum biology bringing fundamental knowledge to biological redox chemistry relevant to disease mechanisms and bioenergy. This knowledge transcends the biological arena bringing revolutionary solutions to the design of new materials and applications in quantum information.
量子力学是描述纳米系统行为的基本理论。在过去的三十年里,我们已经看到了越来越多的量子力学效应的表现形式在各种生物分子系统连接到基本的生物功能。在光合作用中,已经检测到捕光光合复合物的长寿命振动相干性。在室温下,这种意想不到的长寿命量子相干性赋予了天然光合复合物显着的能量转移效率。在鸟类导航中,隐花色素蛋白内部的自由基对的光生成被用作磁感受机制。自由基对处于单重态(非活动态)或三重态(活动态)的时间受到弱地磁场方向的影响。在许多鸟类和植物中,这被用作精确的指南针。上述自由基对机制也为解释活性氧(ROS)的产生和控制提供了科学依据,ROS在细胞信号传导和稳态中起着重要作用。上述案例提供了新兴量子生物学领域的例子的快速调查,该领域延伸到其他非常不同的领域,如嗅觉,认知,DNA氧化损伤,在所有上述例子中,最引人注目的一点不仅是量子力学本身的表现,这是在研究生物系统到分子水平时出现的,而且是在自然界如何进化以控制这种分子尺度的过程来实现重要功能。理解自然界如何将量子力学过程编排到其有利的位置与当前的量子技术时代有很大的相关性。上面的例子告诉我们电子自旋在生物过程中意想不到的重要作用。本项目提出研究一种基于电子自旋的新的量子生物效应,其影响扩展到所有手性氧化还原生物分子系统。关键的潜在机制是基于手性诱导的自旋选择性(CISS),这是指手性分子结构选择电子自旋的一个特定组分的固有能力,从而导致自旋极化。当电流流过手性分子系统时,瞬态电子经历一定程度的自旋极化,类似于在施加磁场下的标准磁性设备中发生的情况。CISS效应呈现出与生物学相关的两个基本成分:(1)它发生在室温下,(2)在没有外部磁场的情况下运行。CISS效应在生物学中的转化意味着围绕氧化还原辅因子的手性肽支架充当“智能矩阵”,通过磁性准备进入氧化还原中心的交叉电子的自旋。我们的工作团队带来了独特的理论-实验方法,结合了先进的单肽/蛋白质电特性和自旋极化电子传输理论的最新发展。使用这种协同方法,该联合体已经在浸入生理介质中的受控纳米级间隙中捕获的单个3纳米长的α-螺旋肽序列中证明了极大的电子自旋极化(>60%)。该项目建立在这些杰出的结果之上,以(1)生成螺旋肽中CISS效应的原子图像,(2)量化(1)在氧化还原蛋白质的电荷传输中的影响,以及(3)研究CISS对氧化还原酶促反应的影响。我们预计我们的研究结果将在量子生物学中开辟一个新的领域,为与疾病机制和生物能源相关的生物氧化还原化学带来基础知识。这种知识超越了生物竞技场,为新材料的设计和量子信息的应用带来了革命性的解决方案。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrostatic catalysis of a click reaction in a microfluidic cell.
  • DOI:
    10.1038/s41467-024-44716-2
  • 发表时间:
    2024-01-26
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Sevim, Semih;Sanchis-Gual, Roger;Franco, Carlos;Aragones, Albert C.;Darwish, Nadim;Kim, Donghoon;Picca, Rosaria Anna;Nelson, Bradley J.;Ruiz, Eliseo;Pane, Salvador;Diez-Perez, Ismael;Puigmarti-Luis, Josep
  • 通讯作者:
    Puigmarti-Luis, Josep
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ismael DIEZ PEREZ其他文献

Ismael DIEZ PEREZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

炎性反应中巨噬细胞激活诱导死亡(activation-induced cell death,AICD)的机理研究
  • 批准号:
    30330260
  • 批准年份:
    2003
  • 资助金额:
    105.0 万元
  • 项目类别:
    重点项目

相似海外基金

ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
  • 批准号:
    EP/X036715/1
  • 财政年份:
    2023
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Research Grant
Investigation of underlying physics and applications of chiral-induced spin selectivity phenomena
手性诱导自旋选择性现象的基础物理和应用研究
  • 批准号:
    22KF0220
  • 财政年份:
    2023
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Observation of superconducting spin accumulation induced by magnetic field
磁场引起的超导自旋积累的观测
  • 批准号:
    23K19022
  • 财政年份:
    2023
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
  • 批准号:
    23KJ0783
  • 财政年份:
    2023
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Chirality-Induced Spin Selectivity in Biology:The Role of Spin-Polarized Electron Current in Biological Electron Transport & Redox Enzymatic Activity
生物学中手性诱导的自旋选择性:自旋极化电子流在生物电子传输中的作用
  • 批准号:
    2314465
  • 财政年份:
    2023
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
Energy-efficient phase-locked arrays of spin torque nano-oscillators based on current-induced torques in magnetic metals
基于磁性金属电流感应扭矩的节能锁相自旋扭矩纳米振荡器阵列
  • 批准号:
    2213690
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
Spin torque induced dynamics and spin fluctuation in nanoscale non-collinear antiferromagnets
纳米级非共线反铁磁体中的自旋扭矩引起的动力学和自旋涨落
  • 批准号:
    22K14558
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ECCS-EPSRC: Collaborative Research: Acoustically induced Ferromagnetic Resonance (FMR) assisted Energy Efficient Spin Torque memory devices
ECCS-EPSRC:合作研究:声感应铁磁谐振 (FMR) 辅助节能自旋转矩存储器件
  • 批准号:
    2152528
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Standard Grant
Theoretical study on doping-induced electronic states originating from spin-charge separation of strongly correlated insulators
强相关绝缘体自旋电荷分离引起的掺杂诱导电子态的理论研究
  • 批准号:
    22K03477
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAS: Exploiting Spin in Photo-induced Chemistry: Fundamental Explorations of High-spin and Low-spin Transition Metals in Long-lived Charge Separated States and Oxidative Catalysis
CAS:利用光诱导化学中的自旋:长寿命电荷分离态和氧化催化中高自旋和低自旋过渡金属的基础探索
  • 批准号:
    2153862
  • 财政年份:
    2022
  • 资助金额:
    $ 57.93万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了