Novel Plastizymes: discovery and improvement of plastic-degrading enzymes by integrated cycles of computational and experimental approaches
新型塑料酶:通过计算和实验方法的综合循环发现和改进塑料降解酶
基本信息
- 批准号:BB/X00306X/1
- 负责人:
- 金额:$ 385.37万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern life generates enormous amounts of plastic waste: 359 million tons of plastics are produced annually worldwide, of which 90% is produced from fossil fuels and 79% accumulates in landfill or in the natural environment. Collectively all these plastics create an environmental hazard. Furthermore, we are losing valuable materials that could be recycled. As Nature did not encounter plastics for most of its evolutionary history, plastic-degrading enzymes with a metabolic role did not exist. However, recent research into communities of bacteria from oceans and wastewater has shown that over the last 50 years some bacteria have evolved enzymes that can exploit this new nutrient. These plastic degrading enzymes, some of which are known as PETases (as they degrade polyesters, PETs), are not very efficient but represent an exciting starting point to discover and engineer more effective enzymes. Furthermore, international 'metagenome' efforts have been capturing vast amounts of bacterial genomic data from these natural environments, which are now available as resources like MGnify at the European Bioinformatics Institute (EBI). In this project we will use bioinformatics to harvest enzymes from these massive metagenomic databases, by classifying them into functional and structural classes with useful 'promiscuous' chemical activities. We will use state-of-the-art artificial intelligence (AI) and machine learning (ML) tools to do this, proven to classify families of proteins with high functional similarity. Putative novel plastic-degrading enzymes identified by this approach will be further analysed by ML tools which screen for predicted solubility. We will also perform chemical studies to assess improvements in enzyme activity, compared to the existing, inefficient, PETases. Any putative plastic-degrading enzymes will then provide a starting point for directed evolution experiments where we select new variants of the enzymes with improved properties. To best explore evolution of plastic degrading ability we will use our unique ultrahigh-throughput assay for particle breakdown, with a throughput of over 10 million clones per day. We can thus directly assess the ability of enzymes to chemically act on plastic particles (rather than substrates that only mimic plastics). This will revolutionise the field of enzymatic plastic degradation, because so far only marginal improvements have been possible using proxy substrates. In addition to efficient screening, the analysis of the output sequences of screening will be fed back into our bioinformatic analyses and target selection. We will also structurally characterise these enzymes to discover how changes in their functional sites have improved their ability to bind and digest plastics. This data will provide detailed insights on how protein sites can diverge and evolve better plastic degrading properties, thus improving our in silico selection protocol. We have performed pilot work on PETases and will build on this and extend to other plastic degrading enzymes (plastizymes). This close integration of 'dry' data science and 'wet' experimental work results in powerful cycles of in silico analysis, experimental tests and refinement of analysis tools that are more powerful than current small scale protein engineering campaigns. The project thus addresses one of the most important (and also most difficult) environmental challenges, but more generally, also provides a paradigm to demonstrate how an interdisciplinary approach can accelerate evolution in cases where no effective natural enzyme is available. If successful, this paradigm would form the basis not just for the 'rules of life' (as mentioned in the call text), but for 'rules beyond life' (as it exists now), targeted to address the future needs of our society.
现代生活产生了大量的塑料垃圾:全球每年生产3.59亿吨塑料,其中90%来自化石燃料,79%积累在垃圾填埋场或自然环境中。总而言之,所有这些塑料都造成了环境危害。此外,我们正在失去可以回收的有价值的材料。由于自然界在其进化史的大部分时间里没有遇到塑料,因此不存在具有新陈代谢作用的塑料降解酶。然而,最近对海洋和废水中细菌群落的研究表明,在过去的50年里,一些细菌进化出了可以利用这种新营养的酶。这些塑料降解酶,其中一些被称为PETase(因为它们降解聚酯、宠物),效率不是很高,但代表着一个令人兴奋的起点,以发现和设计更有效的酶。此外,国际“元基因组”努力一直在从这些自然环境中捕获大量的细菌基因组数据,这些数据现在可以作为欧洲生物信息学研究所(EBI)的MGnify等资源获得。在这个项目中,我们将使用生物信息学从这些庞大的元基因组数据库中收获酶,将它们归类为具有有用的“混杂”化学活性的功能和结构类。我们将使用最先进的人工智能(AI)和机器学习(ML)工具来完成这项工作,事实证明,这些工具可以对功能相似的蛋白质家族进行分类。通过这种方法确定的假定的新型塑料降解酶将被ML工具进一步分析,该工具筛选预测的溶解度。我们还将进行化学研究,以评估与现有的低效PETase相比,酶活性的改善。然后,任何假定的塑料降解酶都将为定向进化实验提供一个起点,在这些实验中,我们选择具有改进特性的酶的新变种。为了更好地探索塑料降解能力的演变,我们将使用我们独特的超高通量颗粒分解测试,每天的吞吐量超过1000万个克隆。因此,我们可以直接评估酶对塑料颗粒(而不是只模仿塑料的底物)进行化学作用的能力。这将给酶促塑料降解领域带来革命性的变化,因为到目前为止,使用代理基质只能带来微乎其微的改善。除了有效的筛选外,对筛选的输出序列的分析将反馈到我们的生物信息学分析和目标选择中。我们还将对这些酶的结构进行表征,以发现它们功能位点的变化如何提高它们结合和消化塑料的能力。这些数据将提供关于蛋白质位点如何分化并进化出更好的塑料降解特性的详细见解,从而改进我们的电子选择方案。我们已经在PETase上进行了试点工作,并将在此基础上扩展到其他塑料降解酶(塑料酶)。这种“干”数据科学和“湿”实验工作的紧密结合导致了电子分析、实验测试和分析工具改进的强大循环,这些分析工具比目前的小规模蛋白质工程活动更强大。因此,该项目解决了最重要(也是最困难)的环境挑战之一,但更广泛地说,也提供了一个范例,说明在没有有效的天然酶可用的情况下,跨学科方法如何加速进化。如果成功,这一范例不仅将成为“生活规则”(如呼吁文本中提到的)的基础,而且将成为“生活之外的规则”(目前存在)的基础,旨在满足我们社会未来的需要。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemoenzymatic Photoreforming: A Sustainable Approach for Solar Fuel Generation from Plastic Feedstocks.
化学酶照明形成:塑料原料产生太阳能燃料的可持续方法。
- DOI:10.1021/jacs.3c05486
- 发表时间:2023-09-20
- 期刊:
- 影响因子:15
- 作者:Bhattacharjee, Subhajit;Guo, Chengzhi;Lam, Erwin;Holstein, Josephin M.;Rangel Pereira, Mariana;Pichler, Christian M.;Pornrungroj, Chanon;Rahaman, Motiar;Uekert, Taylor;Hollfelder, Florian;Reisner, Erwin
- 通讯作者:Reisner, Erwin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Hollfelder其他文献
Marmoset and human trophoblast stem cells differ in signaling requirements and recapitulate divergent modes of trophoblast invasion
- DOI:
10.1016/j.stem.2024.09.004 - 发表时间:
2024-10-03 - 期刊:
- 影响因子:
- 作者:
Dylan Siriwardena;Clara Munger;Christopher Penfold;Timo N. Kohler;Antonia Weberling;Madeleine Linneberg-Agerholm;Erin Slatery;Anna L. Ellermann;Sophie Bergmann;Stephen J. Clark;Thomas M. Rawlings;Joshua M. Brickman;Wolf Reik;Jan J. Brosens;Magdalena Zernicka-Goetz;Erika Sasaki;Rüdiger Behr;Florian Hollfelder;Thorsten E. Boroviak - 通讯作者:
Thorsten E. Boroviak
Expanding the repertoire of imine reductases by mining divergent biosynthetic pathways for promiscuous reactivity
通过挖掘具有混杂反应性的不同生物合成途径来扩大亚胺还原酶的种类
- DOI:
10.1016/j.checat.2024.101160 - 发表时间:
2024-12-19 - 期刊:
- 影响因子:11.600
- 作者:
Godwin A. Aleku;Florian Hollfelder - 通讯作者:
Florian Hollfelder
Enzymes under the nanoscope
纳米显微镜下的酶
- DOI:
10.1038/456045a - 发表时间:
2008-11-05 - 期刊:
- 影响因子:48.500
- 作者:
Anthony J. Kirby;Florian Hollfelder - 通讯作者:
Florian Hollfelder
Enzymes under the nanoscope
纳米显微镜下的酶
- DOI:
10.1038/456045a - 发表时间:
2008-11-05 - 期刊:
- 影响因子:48.500
- 作者:
Anthony J. Kirby;Florian Hollfelder - 通讯作者:
Florian Hollfelder
Florian Hollfelder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florian Hollfelder', 18)}}的其他基金
Ultrahigh throughput total transcriptomics
超高通量全转录组学
- 批准号:
EP/Y032756/1 - 财政年份:2023
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Mapping the overlapping fitness landscapes of a superfamily of promiscuous enzymes: strategies for directed evolution?
绘制混杂酶超家族的重叠适应度景观:定向进化策略?
- 批准号:
BB/W000504/1 - 财政年份:2022
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
CAZyme evolution and discovery: Ultrahigh throughput screening of carbohydrate-active enzymes in modular assays modular based on coupled reactions
CAZyme 的演变和发现:基于耦合反应的模块化测定中碳水化合物活性酶的超高通量筛选
- 批准号:
BB/W006391/1 - 财政年份:2022
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Biocatalysis by plastic-degrading enzymes for bioremediation and recycling
塑料降解酶的生物催化用于生物修复和回收
- 批准号:
EP/X03464X/1 - 财政年份:2022
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
SENSE - Screening of ENvironmental SEquences to discover novel protein functions using informatics target selection and high-throughput validation
SENSE - 使用信息学目标选择和高通量验证筛选环境序列以发现新的蛋白质功能
- 批准号:
BB/T003545/1 - 财政年份:2020
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Towards Novel Glycoside Hydrolases
迈向新型糖苷水解酶
- 批准号:
BB/L002469/1 - 财政年份:2014
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
New detection modes for droplet microfluidics
液滴微流控的新检测模式
- 批准号:
BB/K013629/1 - 财政年份:2013
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Exploring the Potential of Networked Directed Evolution Based on Novel LacI/effector Pairs
探索基于新型 LacI/效应器对的网络化定向进化的潜力
- 批准号:
BB/J008214/1 - 财政年份:2012
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Catalytic promiscuity in a protein superfamily
蛋白质超家族中的催化混杂
- 批准号:
BB/I004327/1 - 财政年份:2011
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant
Bronsted Analysis of Catalytic Promicuity in Enzyme Models and Model Enzymes
酶模型和模型酶中催化相似性的布朗斯台德分析
- 批准号:
EP/E019390/1 - 财政年份:2007
- 资助金额:
$ 385.37万 - 项目类别:
Research Grant