Fast DNA Sequencing Using Near-field Microwave Sensors
使用近场微波传感器进行快速 DNA 测序
基本信息
- 批准号:BB/X003256/1
- 负责人:
- 金额:$ 23.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
DNA is the nucleic acid that passes information from parent to child in living systems. Determining the order of the four information-carrying bases, (denoted A,C,G,T) is known as "sequencing". Such sequencing is at the core of modern molecular biology and genetic epidemiology and has huge potential for applications in diagnosis and precision medicine. Since the pioneering work that led to the first sequencing of the human genome about 20 years ago, sequencing technology has made enormous progress, significantly reducing time and complexity. Portable sequencing devices are now commercially available and have been fundamental, for example, for field-surveillance of Ebola virus in West Africa and rapid identification of SARS-CoV-2 (COVID19) variants.These portable devices are based on the motion of dissolved ions (charged atoms) through a tiny hole called a "nanopore", whose dimensions are in the order of a few nanometers, i.e. billionths of a metre. If DNA strands are present, they can also be made to flow through the pore, temporarily blocking the flow of ions. Each of the four bases forming the DNA modifies the ion flow in a slightly different way and therefore, by monitoring how the flow of ions changes over time it is possible to determine the sequence of the bases within the DNA. Nanopore sequencing is revolutionising the way we sequence DNA, but suffers from some limitations which are fundamentally linked to the ion current approach. In particular, although DNA can pass through the pore at a high speed (~1 million bases per second) it is not possible to monitor the motion of ions this quickly and therefore it is not possible to read the sequence in real time. Instead complex enzyme-based mechanisms must be used to slow down the DNA transit.In this project, we hope to achieve a transformative change in real-time sequencing rates by combining solid-state nanopores with a new way of identifying the four bases within DNA strands. To do so, we will use microwaves - electromagnetic waves oscillating at GHz frequencies. Microwaves are at the core of the information and communication technologies used in mobile phones, wi-fi and Bluetooth networks and GPS satellites to carry large amounts of information. Microwaves also interact with matter and can be used to probe molecules by measuring their unique electromagnetic fingerprints. Our proposed sensors will combine atomically-precise nanofabrication with the measurement accuracy offered by high frequency electronics. The device will consist of an atomically-thin conductor (graphene) shaped as a bowtie with a small gap at its centre. The conductor acts as a waveguide, enabling microwave propagation between the two ends of the sensor. The centre of the bowtie will be carefully aligned with a nanopore, so that, when DNA passes through the pore, it interacts with the electromagnetic field formed at the bowtie tips. We hope that each of the four bases forming the DNA (A, C, G and T) will cause different transmission and reflection of the propagating microwaves, allowing the sequence of bases to be read. This approach replaces the slow, ion-motion based electrochemistry currently used for nanopore sensing with fast communication-engineering technologies, with potential for a 1000-fold increase in speed.The sensor technology developed will have capabilities beyond sequencing, as it can be applied to analyse other molecules relevant for biochemistry and medicine. Thanks to the compatibility of our sensors with electronic chip fabrication technology and the ubiquitous use of microwave electronics for wireless communication, we envisage a seamless integration with already existing technology to realise portable sequencing and sensing tools.
DNA是在生命系统中将信息从父母传递给孩子的核酸。确定四个携带信息的碱基(表示为A、C、G、T)的顺序被称为"测序"。这种测序是现代分子生物学和遗传流行病学的核心,在诊断和精准医学方面具有巨大的应用潜力。自从大约20年前人类基因组首次测序的开创性工作以来,测序技术已经取得了巨大的进步,大大减少了时间和复杂性。便携式测序设备现已上市,并且对于西非埃博拉病毒的现场监测和SARS-CoV-2(COVID 19)变种的快速识别等都至关重要。这些便携式设备基于溶解离子(带电原子)通过称为“纳米孔”的小孔的运动,其尺寸为几纳米量级,即十亿分之一米。如果DNA链存在,它们也可以流过孔,暂时阻止离子的流动。形成DNA的四种碱基中的每一种都以略微不同的方式改变离子流,因此,通过监测离子流如何随时间变化,可以确定DNA内碱基的序列。纳米孔测序正在彻底改变我们对DNA进行测序的方式,但受到一些限制,这些限制从根本上与离子电流方法有关。特别是,尽管DNA可以以高速(每秒约100万个碱基)通过孔,但不可能如此快速地监测离子的运动,因此不可能在真实的时间内读取序列。相反,必须使用复杂的基于酶的机制来减缓DNA的传输。在这个项目中,我们希望通过将固态纳米孔与识别DNA链内四种碱基的新方法相结合,实现实时测序速率的变革。为此,我们将使用微波-以GHz频率振荡的电磁波。微波是移动的电话、wi-fi和蓝牙网络以及全球定位系统卫星中用于携带大量信息的信息和通信技术的核心。微波还可以与物质相互作用,通过测量分子独特的电磁指纹来探测分子。我们提出的传感器将结合联合收割机原子精度的纳米纤维与高频电子提供的测量精度。该设备将由一个原子级薄的导体(石墨烯)组成,形状像一个蝴蝶结,在其中心有一个小间隙。导体充当波导,使微波能够在传感器的两端之间传播。蝴蝶结的中心将与纳米孔仔细对齐,这样,当DNA通过孔时,它与蝴蝶结尖端形成的电磁场相互作用。我们希望构成DNA的四种碱基(A、C、G和T)中的每一种都能引起传播微波的不同透射和反射,从而使碱基序列得以读取。这种方法取代了目前用于纳米孔传感的缓慢的,基于离子运动的电化学与快速通信工程技术,具有1000倍的速度增加的潜力。开发的传感器技术将具有超越测序的能力,因为它可以应用于分析与生物化学和医学相关的其他分子。由于我们的传感器与电子芯片制造技术的兼容性以及微波电子器件在无线通信中的普遍使用,我们设想与现有技术无缝集成,以实现便携式测序和传感工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Lombardo其他文献
Real-world experience with long-term albumin in patients with cirrhosis and ascites
- DOI:
10.1016/j.jhepr.2024.101221 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Enrico Pompili;Giacomo Zaccherini;Salvatore Piano;Pierluigi Toniutto;Antonio Lombardo;Stefania Gioia;Giulia Iannone;Clara De Venuto;Marta Tonon;Roberta Gagliardi;Maurizio Baldassarre;Greta Tedesco;Giorgio Bedogni;Marco Domenicali;Vito Di Marco;Silvia Nardelli;Vincenza Calvaruso;Davide Bitetto;Paolo Angeli;Paolo Caraceni - 通讯作者:
Paolo Caraceni
Treatment of Skin Lesions Induced by Cetuximab Therapy with an Acid-Oxidizing Solution Containing Hypochlorous Acid
用含次氯酸的酸氧化溶液治疗西妥昔单抗治疗引起的皮肤病变
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
M. Burlando;D. Fiorentino;Antonio Lombardo;Francesco;Cattel - 通讯作者:
Cattel
Antonio Lombardo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于 DNA 编码分子库的新型蛋白抑制剂分子胶水活性评价与机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于仿生非平衡态的DNA纳米机器构建及其对多种霉菌毒素高灵敏同步
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
复制蛋白A小分子抑制剂-HAMNO调控DNA损伤修复的结构及功能研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于合金@硼烯的比率型折纸电化学芯片构建及其在多种循环肿瘤DNA的超灵敏检测
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
HMGCL通过H3K27乙酰化增强RAD52依赖的DNA损伤修复促进宫颈癌放疗抵抗的机制研究
- 批准号:JCZRLH202500546
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
替尼泊苷抑制APEX1驱动DNA损伤在治疗肺癌中的作用及机制研究
- 批准号:JCZRYB202500477
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
LncRNA SNHG14调控miR-214-3p的DNA甲基化水平在支气管肺发育不良肺泡化阻滞的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于内在抗炎和抗氧化功能的可注射 DNA 水凝胶高效负载牙髓干细胞促进脊髓损伤修复的作用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
PLOD2的DNA低甲基化模式驱动内质网与线粒体代谢串扰诱导免疫微环境重塑和化疗耐药
- 批准号:KLY25H160008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
DNA2在精子发生中的功能以及其缺失导致男性不育的机制研究
- 批准号:Z25H040004
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
SBIR Phase I: Autonomous System for DNA Sequencing Prep in Space and Austere Environments
SBIR 第一阶段:在太空和严峻环境中进行 DNA 测序准备的自主系统
- 批准号:
2344191 - 财政年份:2024
- 资助金额:
$ 23.09万 - 项目类别:
Standard Grant
CIDR - UPGRADE WHOLE GENOME SEQUENCING ON 2,294 EXPERIMENTAL DNA SAMPLES FOR NCI, BEEBE-DIMMER
CIDR - 升级 NCI、BEEBE-DIMMER 2,294 个实验 DNA 样本的全基因组测序
- 批准号:
10949121 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Novel bioinformatics methods to detect DNA and RNA modifications using Nanopore long-read sequencing
使用 Nanopore 长读长测序检测 DNA 和 RNA 修饰的新型生物信息学方法
- 批准号:
10792416 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Optimising translocation of Hel308 helicase for improved nanopore DNA sequencing
优化 Hel308 解旋酶的易位以改进纳米孔 DNA 测序
- 批准号:
2886325 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Studentship
Microsatellite Instability Sequencing via Single-Molecule DNA Re-Reading
通过单分子 DNA 重读进行微卫星不稳定性测序
- 批准号:
10822077 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Methylated DNA sequencing by single nucleotide measurement using surface-enhanced Raman spectroscopy
使用表面增强拉曼光谱通过单核苷酸测量进行甲基化 DNA 测序
- 批准号:
23H01823 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
DNA–Protein Cross-Linking Sequencing for Genome-Wide Mapping of Abasic Sites at Single-Nucleotide Resolution
DNA-蛋白质交联测序,以单核苷酸分辨率进行全基因组脱碱基位点作图
- 批准号:
10723069 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Femto-seq: Targeted photo-biotinylation, pulldown and sequencing of locus and region-specific DNA from femtoliter volumes within individual cells
Femto-seq:从单个细胞内的飞升体积中对位点和区域特异性 DNA 进行靶向光生物素化、下拉和测序
- 批准号:
10587721 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Improving diagnosis of post-traumatic sepsis using plasma microbial DNA sequencing
利用血浆微生物 DNA 测序改善创伤后脓毒症的诊断
- 批准号:
10572825 - 财政年份:2023
- 资助金额:
$ 23.09万 - 项目类别:
Developing Foundations for Nanopore DNA Sequencing Course-based Undergraduate Research Experiences at Minority-Serving Institutions
为少数民族服务机构基于纳米孔 DNA 测序课程的本科生研究经验奠定基础
- 批准号:
2215859 - 财政年份:2022
- 资助金额:
$ 23.09万 - 项目类别:
Standard Grant














{{item.name}}会员




