Dissecting protein kinase A regulation of neurons using synthetic approaches

使用合成方法剖析蛋白激酶 A 对神经元的调节

基本信息

  • 批准号:
    BB/X008215/1
  • 负责人:
  • 金额:
    $ 63.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Cells throughout the body present surface receptors that enable them to respond to external stimuli such as hormones and neurotransmitters. A common signal transduction mechanism is for these external primary messengers to trigger accumulation of the 'second messenger' cyclic AMP (cAMP) within cells. The major receptor for cAMP - protein kinase A (PKA) - responds to cAMP elevations to bring about physiological changes by phosphorylating proteins. The myriad processes controlled by PKA phosphorylation include sympathetic stimulation of heart rate, control of water reuptake in the kidney, and control of the excitability and shape of brain cells called neurons. Research in recent years has revealed that cAMP signalling in cells is organised in 'nanodomains' sometimes with a diameter of less than 100 nanometres. The precise location of a copy of PKA in a cell therefore dictates whether it will be activated by a given stimulus. Anchoring proteins position PKA at different sub-cellular locations, and these anchoring proteins are thought to direct the kinase to phosphorylate different sub-sets of substrates linked to different functions. Furthermore, targeting of individual PKA anchoring sites is considered a promising strategy for selective disruption of pathological processes supported by PKA phosphorylation such as neuronal excitability underlying epilepsy. However, fundamental aspects of our current understanding of PKA anchoring have not been resolved, and the precise role that different PKA anchoring proteins play in neuronal excitability is yet to be disentangled. These areas would benefit from new technologies for manipulating PKA activity in time and space.In this study, we will develop two innovative technologies inspired by the field of synthetic biology that may be applied to direct PKA to specific anchoring proteins, and to dictate when the kinase is activated under the control of blue light. We will then utilise these technologies in combination with existing methods to investigate fundamentals of PKA signalling in nanodomains, and the specific roles of different PKA anchoring proteins in controlling the shape and excitability of neurons. To enable specific anchoring of PKA to individual anchoring proteins, we will take advantage of protein domains that enable molecular 'gluing' of proteins in living cells. This work will involve the development of two cell lines using gene editing technologies. To develop a photo-activatable form of PKA, we will perform high-throughput screening with a library of PKA regulatory and catalytic subunits in which the elements that normally respond to cAMP are replaced with ones that respond to blue light. The most promising combinations will be optimised and validated using protein binding and activity assays. Our investigations of cAMP nanodomain fundamentals will include determining how individual PKA-anchoring protein complexes respond to different primary stimuli using targeted fluorescent reporters of PKA activity and quantitative proteomics. The final component of our study will focus on clarifying how changes in cAMP and PKA are linked to epilepsy using a slice model preparation. We will also measure changes in excitability and morphology in cultured neurons to determine how different PKA anchoring sites control these aspects of neuronal function.We have assembled a team of investigators with complementary expertise in techniques ranging from protein engineering to electrophysiology, and in fields including cAMP signalling and epilepsy. The proposed research will benefit from collaboration with experts in photoactivation and quantitative proteomics. In addition to advancing fundamental knowledge of nanodomain cAMP signalling in neurons, the new technologies developed during this research will benefit researchers focusing on the many other roles played by PKA throughout the body.
全身的细胞都有表面受体,使它们能够对激素和神经递质等外部刺激做出反应。一种常见的信号转导机制是这些外部初级信使触发细胞内“第二信使”环AMP(cAMP)的积累。cAMP的主要受体-蛋白激酶A(PKA)-响应cAMP升高,通过磷酸化蛋白质引起生理变化。PKA磷酸化控制的无数过程包括心率的交感神经刺激,肾脏中水再摄取的控制,以及称为神经元的脑细胞的兴奋性和形状的控制。近年来的研究表明,细胞中的cAMP信号传导是在“纳米结构域”中组织的,有时直径小于100纳米。因此,PKA拷贝在细胞中的精确位置决定了它是否会被给定的刺激激活。锚定蛋白将PKA定位在不同的亚细胞位置,这些锚定蛋白被认为指导激酶磷酸化与不同功能相关的底物的不同子集。此外,针对单个PKA锚定位点被认为是选择性破坏PKA磷酸化支持的病理过程(如癫痫相关的神经元兴奋性)的有前途的策略。然而,我们目前对PKA锚定的理解的基本方面还没有得到解决,并且不同的PKA锚定蛋白在神经元兴奋性中所起的确切作用还没有被解开。这些领域将受益于新的技术来操纵PKA的活动在时间和空间。在这项研究中,我们将开发两个创新的技术,灵感来自合成生物学领域,可能会被应用到直接PKA特定的锚定蛋白,并指示当激酶激活的蓝光控制下。然后,我们将利用这些技术与现有方法相结合,研究纳米结构域中PKA信号传导的基本原理,以及不同PKA锚定蛋白在控制神经元形状和兴奋性方面的具体作用。为了使PKA能够特异性锚定到单个锚定蛋白,我们将利用蛋白质结构域,使活细胞中的蛋白质分子“粘合”。这项工作将涉及使用基因编辑技术开发两种细胞系。为了开发PKA的光活化形式,我们将使用PKA调节和催化亚基库进行高通量筛选,其中通常对cAMP响应的元件被对蓝光响应的元件取代。最有前途的组合将使用蛋白质结合和活性测定进行优化和验证。我们对cAMP纳米结构域基本原理的研究将包括确定单个PKA锚定蛋白复合物如何使用PKA活性的靶向荧光报告分子和定量蛋白质组学对不同的初级刺激做出反应。我们研究的最后一部分将集中在阐明cAMP和PKA的变化如何与癫痫使用切片模型制备。我们还将测量培养的神经元的兴奋性和形态学的变化,以确定不同的PKA锚定位点如何控制神经元功能的这些方面。我们已经组建了一个研究团队,他们在蛋白质工程到电生理学等技术领域以及cAMP信号传导和癫痫等领域具有互补的专业知识。拟议的研究将受益于与光活化和定量蛋白质组学专家的合作。除了推进神经元中nanodomain cAMP信号传导的基础知识外,本研究期间开发的新技术将使研究人员受益,重点关注PKA在整个身体中发挥的许多其他作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Gold其他文献

LIPOPROTEIN(A), SOLUBLE UROKINASE PLASMINOGEN ACTIVATOR RECEPTOR, AND CARDIOVASCULAR DISEASE RISK
脂蛋白(A)、可溶性尿激酶型纤溶酶原激活物受体与心血管疾病风险
  • DOI:
    10.1016/s0735-1097(25)01182-9
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Booth D. Vogel;Scott Eisenberg;Shaimaa Sakr;Adithya K. Yadalam;Matthew Gold;Ishwar Chuckaree;Vardhmaan Jain;Veena Agusala;Nishant Vatsa;Daniel Gold;Viola Vaccarino;Danny J. Eapen;Puja K. Mehta;Salim Hayek;Alireza Rahbar;Ayman Alkhoder;Nisreen Haroun;Ahmed Eldaidamouni;Muhammad Owais;Alexander C. Razavi;Arshed A. Quyyumi
  • 通讯作者:
    Arshed A. Quyyumi
REAL-WORLD OUTCOMES OF MAVACAMTEN AMONG BLACK PATIENTS WITH SYMPTOMATIC OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY: EVIDENCE FROM COLLIGO-HCM
马瓦卡门在有症状梗阻性肥厚型心肌病的黑人患者中的真实世界结果:来自 COLLIGO-HCM 的证据
  • DOI:
    10.1016/s0735-1097(25)01741-3
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Pankaj Arora;James MacNamara;Arnon Adler;Elad Maor;Rachel Bastiaenen;Michael Arad;Nirav Patel;Matthew Gold;Cliff Pruett;Ervant Maksabedian Hernandez;Eileen Han;Patricia Schuler;Joel Salazar Mendiguchia Y Garcia;Angel Pichardo;Ozlem Bilen
  • 通讯作者:
    Ozlem Bilen
TEMPORAL TRENDS IN SEPTAL REDUCTION THERAPY PROCEDURES IN THE ERA OF NOVEL MYOSIN INHIBITORS FOR OBSTRUCTIVE HYPERTROPHIC CARDIOMYOPATHY
在新型肌球蛋白抑制剂治疗梗阻性肥厚型心肌病时代,间隔缩小治疗程序的时间趋势
  • DOI:
    10.1016/s0735-1097(25)01965-5
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    22.300
  • 作者:
    Patrick McLean;Edward A. Woods;Matthew Gold;Tugce Nida Bozkurt;Byron Robinson Williams;Tamer Attia;Wissam A. Jaber;Ozlem Bilen
  • 通讯作者:
    Ozlem Bilen
ASSOCIATION OF CMV ANTIBODY LEVELS WITH HEART FAILURE WITH PRESERVED EJECTION FRACTION
  • DOI:
    10.1016/s0735-1097(24)02627-5
  • 发表时间:
    2024-04-02
  • 期刊:
  • 影响因子:
  • 作者:
    Krishan Patel;Adithya K. Yadalam;Matthew Gold;Ayman Alkhoder;Zain Siddiqui;Ozair Khawaja;Hassan Allaqaband;Shaimaa Sakr;Alireza Rahbar;Yazan Haroun;Hania Hashmi;Amna Shamim;Kiran Ejaz;Arshed A. Quyyumi
  • 通讯作者:
    Arshed A. Quyyumi
PREVALENCE & CONTROL OF EXTREMELY HIGH LDL CHOLESTEROL: AN ANALYSIS IN >10,000,000 INDIVIDUALS ACROSS 429 HEALTH SYSTEMS
  • DOI:
    10.1016/s0735-1097(19)32390-3
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Gold;Shannon Doerfler;Daniel Wojdyla;Tony Schibler;Eric Peterson;Ann Navar
  • 通讯作者:
    Ann Navar

Matthew Gold的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Gold', 18)}}的其他基金

Local calcium signalling in the postsynaptic density
突触后密度中的局部钙信号传导
  • 批准号:
    BB/N015274/1
  • 财政年份:
    2016
  • 资助金额:
    $ 63.04万
  • 项目类别:
    Research Grant

相似国自然基金

有翅与无翅蚜虫差异分泌唾液蛋白Cuticular protein在调控植物细胞壁免疫中的功能
  • 批准号:
    32372636
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
原发性开角型青光眼中SIPA1L1促进小梁网细胞外基质蛋白累积升高眼压的作用机制
  • 批准号:
    82371054
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
胆固醇合成蛋白CYP51介导线粒体通透性转换诱发Th17/Treg细胞稳态失衡在舍格伦综合征中的作用机制研究
  • 批准号:
    82370976
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
细胞周期蛋白依赖性激酶Cdk1介导卵母细胞第一极体重吸收致三倍体发生的调控机制研究
  • 批准号:
    82371660
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
转运蛋白RCP调控巨噬细胞脂肪酸氧化参与系统性红斑狼疮发病的机制研究
  • 批准号:
    82371798
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
G蛋白偶联受体GPR110调控Lp-PLA2抑制非酒精性脂肪性肝炎的作用及机制研究
  • 批准号:
    82370865
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
蛋白精氨酸甲基化转移酶PRMT5调控PPARG促进巨噬细胞M2极化及其在肿瘤中作用的机制研究
  • 批准号:
    82371738
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
紧密连接蛋白PARD3下调介导黏膜上皮屏障破坏激活STAT3/SNAI2通路促进口腔白斑病形成及进展的机制研究
  • 批准号:
    82370954
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目

相似海外基金

Dissecting the intrinsic and extrinsic regulators of prostate cancer dormancy in the bonemicroenvironment.
剖析骨微环境中前列腺癌休眠的内在和外在调节因子。
  • 批准号:
    10743406
  • 财政年份:
    2023
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting the role and mechanism of EML4-ALK condensates in oncogenic signaling and tumor growth
剖析 EML4-ALK 缩合物在致癌信号和肿瘤生长中的作用和机制
  • 批准号:
    10634392
  • 财政年份:
    2023
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting the tumor-intrinsic and -extrinsic roles of TBK1 in tumor immunity
解析 TBK1 在肿瘤免疫中的肿瘤内在和外在作用
  • 批准号:
    10716636
  • 财政年份:
    2023
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting Early Tumor Evolution to Uncover Mechanisms of Tumor Initiation and Drug Resistance
剖析早期肿瘤演化,揭示肿瘤发生和耐药机制
  • 批准号:
    10607859
  • 财政年份:
    2023
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting the differential role of TREM2 and TYROBP in microglial homeostasis, activation, and disease
剖析 TREM2 和 TYROBP 在小胶质细胞稳态、激活和疾病中的不同作用
  • 批准号:
    10640102
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting the interactions between TCR signaling strength and inhibitory pathways
剖析 TCR 信号强度和抑制途径之间的相互作用
  • 批准号:
    10649675
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting Yersinia Yop Targets in Neutrophils
解析中性粒细胞中的耶尔森氏菌 Yop 靶标
  • 批准号:
    10570181
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting the interactions between TCR signaling strength and inhibitory pathways
剖析 TCR 信号强度和抑制途径之间的相互作用
  • 批准号:
    10507695
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting and targeting a novel vulnerability in aggressive Rb1 and p53 doubly deficient prostate cancer
剖析并针对侵袭性 Rb1 和 p53 双缺陷前列腺癌的新弱点
  • 批准号:
    10618217
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Dissecting pemetrexed resistance in non-small cell lung carcinoma
剖析非小细胞肺癌培美曲塞耐药性
  • 批准号:
    10574283
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了