Identifying drivers of phage infectivity in natural microbial communities

确定自然微生物群落中噬菌体感染性的驱动因素

基本信息

  • 批准号:
    BB/X009793/1
  • 负责人:
  • 金额:
    $ 51.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Bacteria are among the most abundant organisms on earth, and are crucial for global geochemical cycling. Their viruses, bacteriophages (phages) are estimated to commonly outnumber bacteria by at least 10: 1, with phages killing around 20% of bacteria daily in the marine ecosystem. Therefore, the scale of this interaction has profound implications for global geochemical cycling. Phages also act as vectors that spread genes between different bacteria, which can have adverse implications for human health, such as the spread of antimicrobial resistance. Phages have also acted as a source for biotechnology innovation, including commonly used enzymes for gene editing and molecular biology. Despite their importance very little is known regarding how phages shape bacterial communities in natural ecosystems.This lack of information about these interactions is because much of our knowledge is based on the small subset of bacteria and their phages that we can grow, or 'culture', in the laboratory. Only a tiny proportion of bacteria, potentially as low as 1%, can be grown in the lab. One method that circumvents this problem is to study the DNA sequences of the microbes present, directly extracting DNA from the environment and stitching it back together using computational algorithms. This is known as 'metagenomics' and allows us to reconstruct the profile of the microbial community, without needing to isolate or grow these microbes in the lab. However, this is a static picture of the community, and it is impossible to identify which microbes are directly interacting. A recent advance in DNA sequencing technology, called HiC sequencing, allows researchers to link DNA molecules that are present within the same cell. This allows us to link viruses that have successfully injected their genomes into host cells, therefore capturing infections in situ.While this new technology has exciting potential, it relies on having a complete database of viruses and hosts DNA sequences with which to link the HiC sequences. This is problematic because reconstructing all the genomes of the microrganisms present is a fundamental challenge. An analogy often used to describe this challenge is that of reconstructing an entire library of books, when all the pages have been shredded and there are different numbers of copies of each book. In this case, each book represents a microbial genome, and the number of copies is the abundance of each organism. Another new technology, called adaptive sequencing, allows for the depletion of the common organisms, i.e. searching for rare microbes, or books in this analogy. HiC sequencing does the equivalent of providing page numbers i.e. identifying which DNA sequences are in close proximity. Together these technologies will allow the accurate reconstruction microbial communities, and enable me to identify all viral infections in an entire community of microbes.By combining new data from these technologies with an existing dataset of soil metagenomes, I will address fundamental questions in the ecology of phages and their hosts. Namely, who infects who? Why do some phages infect more hosts than others? Which defence mechanisms do hosts use to defend against phages? And does this interaction change across different environments, such as when bacteria are more abundant?The research will be carried out at the University of Exeter, a leading institution for the study of microbial ecology and evolution. I will be surrounded by a collaborative group of scientists, and have access to state-of-the art sequencing technologies via the Exeter Sequencing Service, as well as high performance computing clusters. The research has implications for soil health, by understanding how phages shape the microbial community- which is crucial for plant health and development. There is also great potential for learning more about the defence systems bacteria use against phages, many of which are of interest to biotechnology.
细菌是地球上最丰富的生物之一,对全球地球化学循环至关重要。据估计,它们的病毒、噬菌体(噬菌体)的数量通常至少是细菌的10:1,在海洋生态系统中,噬菌体每天杀死约20%的细菌。因此,这种相互作用的规模对全球地球化学循环具有深远的影响。噬菌体还充当在不同细菌之间传播基因的载体,这可能对人类健康产生不利影响,例如抗菌素耐药性的传播。噬菌体也是生物技术创新的来源,包括用于基因编辑和分子生物学的常用酶。尽管噬菌体很重要,但人们对它们如何在自然生态系统中形成细菌群落知之甚少。关于这些相互作用的信息缺乏,是因为我们的大部分知识都是基于我们可以在实验室中培养或“培养”的一小部分细菌及其噬菌体。只有极小比例的细菌,可能低至1%,可以在实验室中培养。绕过这个问题的一种方法是研究存在的微生物的DNA序列,直接从环境中提取DNA,并使用计算算法将其缝合在一起。这就是所谓的“元基因组学”,它允许我们重建微生物群落的轮廓,而不需要在实验室中分离或培养这些微生物。然而,这是一个静态的群落图景,无法确定哪些微生物直接相互作用。DNA测序技术的最新进展被称为hic测序,研究人员可以将同一细胞内存在的dna分子联系起来。这使我们能够将成功地将其基因组注入宿主细胞的病毒联系起来,从而捕获现场感染。虽然这项新技术具有令人兴奋的潜力,但它依赖于拥有一个完整的病毒数据库和宿主DNA序列,以便将HIC序列与之联系起来。这是有问题的,因为重建现有微生物的所有基因组是一个根本性的挑战。一个经常被用来描述这一挑战的类比是重建整个图书图书馆,当所有页面都被粉碎时,每本书都有不同数量的副本。在这种情况下,每本书代表一个微生物基因组,副本的数量是每个有机体的丰度。另一项名为自适应测序的新技术允许耗尽常见有机体,即寻找稀有微生物或类似的书籍。HIC测序的作用相当于提供页码,即识别哪些DNA序列非常接近。结合这些技术,我将能够准确地重建微生物群落,并使我能够识别整个微生物群落中的所有病毒感染。通过将这些技术的新数据与现有的土壤元基因组数据集相结合,我将解决噬菌体及其宿主生态学中的基本问题。也就是说,谁感染了谁?为什么有些噬菌体比其他噬菌体感染更多的宿主?宿主使用哪些防御机制来防御噬菌体?这种相互作用是否会在不同的环境中发生变化,比如细菌数量更多的时候?这项研究将在埃克塞特大学进行,该大学是研究微生物生态和进化的领先机构。我将被一个合作的科学家小组包围,并通过埃克塞特测序服务获得最先进的测序技术,以及高性能计算集群。这项研究通过了解噬菌体如何塑造微生物群落--这对植物的健康和发育至关重要,从而对土壤健康产生了影响。了解细菌用来对抗噬菌体的防御系统也有很大的潜力,其中许多都是生物技术感兴趣的。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CRISPR-Cas in Pseudomonas aeruginosa provides transient population-level immunity against high phage exposures
  • DOI:
    10.1093/ismejo/wrad039
  • 发表时间:
    2024-01-08
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Watson,Bridget N. J.;Capria,Loris;Meaden,Sean
  • 通讯作者:
    Meaden,Sean
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sean Meaden其他文献

The evolution of host resistance to a virus is determined by resources, historical contingency, and time scale
宿主对病毒的抵抗力的演变取决于资源、历史偶然性和时间尺度
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elisa Visher;Hannah Mahjoub;Khadija Soufi;N. Pascual;Vivian Hoang;Lewis J. Bartlett;K. Roberts;Sean Meaden;M. Boots
  • 通讯作者:
    M. Boots

Sean Meaden的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Investigating Biogeographic Hypotheses and Drivers of Diversification in Neotropical Harvestmen (Opiliones: Laniatores) Using Ultraconserved Elements
职业:利用超保守元素研究新热带收获者(Opiliones:Laniatores)多样化的生物地理学假设和驱动因素
  • 批准号:
    2337605
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Continuing Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
  • 批准号:
    2333139
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Standard Grant
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
  • 批准号:
    DE240100340
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Discovery Early Career Researcher Award
Drivers of Political Interference by Military Officers: An Individual-Level Quantitative Analysis
军官政治干预的驱动因素:个人层面的定量分析
  • 批准号:
    24K16290
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecological and Evolutionary Drivers of Antibiotic Resistance in Patients
患者抗生素耐药性的生态和进化驱动因素
  • 批准号:
    EP/Y031067/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Research Grant
Drivers of Local Prosperity Differences: People, Firms and Places
地方繁荣差异的驱动因素:人、企业和地方
  • 批准号:
    ES/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Research Grant
Drivers and impacts of insect biodiversity changes across pantropical forests
泛热带森林昆虫生物多样性变化的驱动因素和影响
  • 批准号:
    MR/X032949/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Fellowship
OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
  • 批准号:
    2419995
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Drivers and Biogeochemical Implications of Saltwater Intrusion Along Arctic Coastlines
合作研究:北极海岸线盐水入侵的驱动因素和生物地球化学影响
  • 批准号:
    2316041
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Standard Grant
Environmental and ecological drivers of tropical peatland methane dynamics across spatial scales
热带泥炭地甲烷空间尺度动态的环境和生态驱动因素
  • 批准号:
    NE/X015238/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了