A New Platform for Real Time Analysis of Metabolic Processes in Live Cells
实时分析活细胞代谢过程的新平台
基本信息
- 批准号:BB/X019098/1
- 负责人:
- 金额:$ 30.04万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
We request an Agilent Seahorse XF Pro analyser interfaced with Cytation 1 imager and software for high throughput real-time analysis of metabolic processes in live cells.Metabolic phenotyping is the term given to the comprehensive analysis of biological samples, such as body fluids (eg urine, blood, saliva), tissues (eg muscle, epithelial, nervous), or cells (eg bacteria, yeast, mammalian) to understand physiological (healthy) or pathological (disease) states. Analytical technologies for metabolic phenotyping of living cells in real-time are essential to fully understand biological processes in their near-to-native state. The routine analysis of cellular mechanisms has the potential to improve our understanding of cell growth and implications of cell aging, impact of environmental changes on cellular health, initiation of disease in healthy cells, effect of drugs or treatments on diseased cells, and impact of interventions on cellular homeostasis. Majority of our existing understanding of metabolic phenotypes involve cell disruption (breaking cells open) to access and analyse its metabolome, or the analysis of the cellular environment to deduce internal cellular bioprocesses. Neither of these approaches accurately represent the native state of metabolism in living cells. It is therefore essential to probe cellular metabolic processes in live cells to better understand biology, diseases, aging, as well as to improve the use of cells in engineering organisms for valuable commodities (such as anti-cancer drugs, vaccines, flavours and fragrances, plastic alternatives, etc).The Agilent Seahorse XF Pro analyser is an instrument that can measure vital cellular processes in live cells, without using disruptive (cell lysis) techniques. The instrument preserves cell integrity during analysis and allows repeat measurements to be taken on the same cells over time, providing an unprecedented depth in metabolic phenotyping of live cells. Additionally, the instrument is easy-to-use, has high throughput, is compatible with a wide variety of cell types, requires minimal cleaning and calibration, and is user-friendly with an intuitive software platform, making it an ideal instrument for multi-user environments, such as the EdinOmics facility. By adding this capability to EdinOmics existing portfolio of analytical technologies, we will be able to provide world leading researchers at the University of Edinburgh with a high throughput metabolic phenotyping technology to improve research productivity, minimise experiment costs, reduce time to results and speed up technology translation to market.
我们要求安捷伦Seahorse XF Pro分析仪与Cytation 1成像仪和软件接口,用于活细胞代谢过程的高通量实时分析。代谢表型是指对生物样本进行综合分析,如体液(如尿液、血液、唾液)、组织(如肌肉、上皮、神经)或细胞(如细菌、酵母、哺乳动物),以了解生理(健康)或病理(疾病)状态。实时的活细胞代谢表型分析技术对于充分了解其接近原生状态的生物过程至关重要。对细胞机制的常规分析有可能提高我们对细胞生长和细胞衰老的含义、环境变化对细胞健康的影响、健康细胞中疾病的开始、药物或治疗对患病细胞的影响以及干预对细胞稳态的影响的理解。我们对代谢表型的大多数现有理解涉及细胞破坏(打破细胞打开)以获取和分析其代谢组,或分析细胞环境以推断细胞内部生物过程。这两种方法都不能准确地反映活细胞的天然代谢状态。因此,必须探索活细胞中的细胞代谢过程,以便更好地了解生物学、疾病、衰老,以及改进在工程生物体中对有价值商品(如抗癌药物、疫苗、香精和香料、塑料替代品等)的细胞使用。Agilent Seahorse XF Pro分析仪是一种可以测量活细胞中重要细胞过程的仪器,无需使用破坏性(细胞裂解)技术。该仪器在分析过程中保持细胞完整性,并允许随时间对同一细胞进行重复测量,为活细胞的代谢表型提供前所未有的深度。此外,该仪器易于使用,具有高通量,与各种细胞类型兼容,需要最少的清洁和校准,并且具有直观的软件平台,用户友好,使其成为多用户环境的理想仪器,例如EdinOmics设施。通过将这一功能添加到EdinOmics现有的分析技术组合中,我们将能够为爱丁堡大学的世界领先的研究人员提供高通量代谢表型技术,以提高研究效率,最大限度地降低实验成本,缩短获得结果的时间,并加快技术转化为市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tessa Moses其他文献
Metabolic engineering for production of triterpenoid saponin building blocks in plants and yeast
在植物和酵母中生产三萜皂苷构件的代谢工程
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Tessa Moses - 通讯作者:
Tessa Moses
Unravelling the Triterpenoid Saponin Biosynthesis of the African Shrub Maesa lanceolata.
揭示非洲灌木 Maesa lanceolata 的三萜皂苷生物合成。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:27.5
- 作者:
Tessa Moses;Jacob Pollier;A. Faizal;S. Apers;L. Pieters;J. Thevelein;D. Geelen;A. Goossens - 通讯作者:
A. Goossens
The type of carbon source not the growth rate it supports can determine diauxie in Saccharomyces cerevisiae
碳源的类型而非其支持的生长速率可决定酿酒酵母中的二次生长。
- DOI:
10.1038/s42003-025-07747-z - 发表时间:
2025-02-27 - 期刊:
- 影响因子:5.100
- 作者:
Yu Huo;Weronika Danecka;Iseabail Farquhar;Kim Mailliet;Tessa Moses;Edward W. J. Wallace;Peter S. Swain - 通讯作者:
Peter S. Swain
Shedding Light on the Power of Light
- DOI:
10.1104/pp.19.00045 - 发表时间:
2019-02 - 期刊:
- 影响因子:7.4
- 作者:
Tessa Moses - 通讯作者:
Tessa Moses
Bacteria encode post-mortem protein catabolism that enables altruistic nutrient recycling
细菌编码死后蛋白质分解代谢,使其能够进行利他性营养物质循环
- DOI:
10.1038/s41467-025-56761-6 - 发表时间:
2025-02-13 - 期刊:
- 影响因子:15.700
- 作者:
Savannah E. R. Gibson;Isabella Frost;Stephen J. Hierons;Tessa Moses;Wilson C. K. Poon;Stuart A. West;Martin J. Cann - 通讯作者:
Martin J. Cann
Tessa Moses的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Toxicology-testing platform integrating immunocompetent in vitro/ex vivo modules with real-time sensing and machine learning based in silico models for life cycle assessment and SSbD
毒理学测试平台,将免疫活性体外/离体模块与基于硅模型的实时传感和机器学习相结合,用于生命周期评估和 SSbD
- 批准号:
10100967 - 财政年份:2024
- 资助金额:
$ 30.04万 - 项目类别:
EU-Funded
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Collaborative R&D
A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
- 批准号:
10064479 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Collaborative R&D
Real-time and high-throughput observation of nanomedicine behaviors of inside cancer cell spheroids with an integrated model of light sheet fluorescence microscopy and a microfluidic platform
利用光片荧光显微镜和微流控平台的集成模型实时高通量观察癌细胞球体内部的纳米医学行为
- 批准号:
23K19100 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
YouSmash: A coding platform and immersive entertainment event to connect users to live, real-time environmental events unfolding on Earth
YouSmash:一个编码平台和沉浸式娱乐活动,可将用户与地球上发生的实时环境事件联系起来
- 批准号:
10069892 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Collaborative R&D
SCH: A Sensing Platform Monitoring Interactions with Daily Objects to Assess Real-World Motor Performance in Stroke Survivors
SCH:监测与日常物体相互作用的传感平台,以评估中风幸存者的真实运动表现
- 批准号:
10816915 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
DEVELOPMENT OF A MACHINE LEARNING-ASSISTED DIGITAL TWIN PLATFORM FOR REAL-TIME OPTIMISATION OF REACTION SYSTEMS UNDER UNCERTAINTY
开发机器学习辅助的数字孪生平台,用于不确定性下反应系统的实时优化
- 批准号:
EP/X024016/1 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Research Grant
Development of a Fast Camera Diagnostic Platform for Real-time Control Applications
开发用于实时控制应用的快速相机诊断平台
- 批准号:
2877223 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Studentship
I-Corps: Web-based Platform for Real-time Crime Mapping
I-Corps:基于网络的实时犯罪地图平台
- 批准号:
2329738 - 财政年份:2023
- 资助金额:
$ 30.04万 - 项目类别:
Standard Grant
SPIRIT - Scalable Platform for Innovations on Real-time Immersive Telepresence
SPIRIT - 可扩展的实时沉浸式网真创新平台
- 批准号:
10039387 - 财政年份:2022
- 资助金额:
$ 30.04万 - 项目类别:
EU-Funded