Genome-wide translational responses to stress: a focus on ribosome stalling
全基因组对压力的翻译反应:关注核糖体停滞
基本信息
- 批准号:BB/Y000080/1
- 负责人:
- 金额:$ 80.67万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Genome-wide translational responses to stress: a focus on ribosome stallingOur bodies are made of very different types of cells: Skin cells are flat and protect our body, while brain cells have cables that pass messages around. Despite being so different, all our cells carry exactly the same information in their genes. What makes them special is what information they use, that is, which genes they switch on and off.Cells need to respond to changes in their environment (stress) to avoid damage or even death. Stress conditions include high or low temperatures, lack of nutrients or a poor supply of oxygen. Cells react to stress by varying the way in which they use the information from their genes.The information on how to make a cell is stored in the form of a DNA molecule. However, this information cannot be read directly: it first needs to be copied into another molecule called messenger RNA (mRNA), from which it can be 'translated' into a protein. Proteins are the components that directly build the cell and make it function, and it is also proteins that are responsible for protecting the cell from the damage caused by stress. The composition of a protein is stored ('encoded') in the messenger RNA. The translation from the messenger RNA to the protein follows a pattern called the genetic code.Cells react to stress by switching on 'defence' genes and by switching off the genes that are not needed during the response to stress. The process of turning on and off genes often takes place at the level of the translation of messenger RNAs (that is, by selecting which messenger RNAs will be translated into proteins).Translation is performed by tiny machines within the cells called ribosomes. Ribosomes are made of two parts (subunits). The two subunits are separate from each other, and get together onto a messenger RNA to translate it (i.e., to read it). Studying translation is relevant for human cells, because the mechanisms that regulate translation often go awry during cancer and several inherited conditions.The process of translating a messenger RNA can be divided into three phases, called initiation, elongation and termination. Initiation involves the two subunits binding together to a messenger RNA and start translating (reading it). After that, the two subunits move along the messenger RNA as they read it (elongation) until they reach the end (termination). Translation is often regulated at the place of initiation (i.e., by deciding which mRNAs get translated). However, translation can also be regulated at the level of elongation, usually by 'freezing' the ribosomes on the messenger RNA and stopping the reading process. This phenomenon is called ribosome 'stalling'.One way to study a complicated process of the human body is to use a model organism: this is a simpler creature, but similar enough to allow us to learn about ourselves. In my laboratory, we study a simple yeast -made of a single cell- that can react to many different types of stress. Using this yeast, we have discovered that when cells get stressed, they stop the process of elongation at specific positions of the messenger RNA. Interestingly, the position where the ribosomes stall is different depending on the kind of nutrients available to them. We would like to understand if this kind of stalling happens in other situations (we have tried 3), how the ribosomes 'know' where and when to stop, and how this behaviour is beneficial for a cell. We expect this information will be useful to understand how human cells behave and, eventually, help us devise cures for disease.
全基因组对压力的翻译反应:关注核糖体停滞我们的身体是由非常不同类型的细胞组成的:皮肤细胞是扁平的,可以保护我们的身体,而脑细胞则有传递信息的电缆。尽管如此不同,我们所有的细胞在它们的基因中携带着完全相同的信息。它们的特殊之处在于它们使用了什么样的信息,也就是说,它们打开和关闭了哪些基因。细胞需要对环境(压力)的变化做出反应,以避免损伤甚至死亡。压力条件包括高温或低温,缺乏营养或氧气供应不足。细胞对压力的反应是通过改变它们使用基因信息的方式来实现的。如何制造细胞的信息以DNA分子的形式存储。然而,这些信息不能直接读取:它首先需要被复制到另一种称为信使RNA(mRNA)的分子中,然后才能被“翻译”成蛋白质。蛋白质是直接构建细胞并使其发挥功能的成分,也是负责保护细胞免受压力造成的损害的蛋白质。蛋白质的组成被储存(“编码”)在信使RNA中。从信使RNA到蛋白质的翻译遵循一种称为遗传密码的模式。细胞对压力的反应是通过打开“防御”基因和关闭在对压力的反应过程中不需要的基因。开启和关闭基因的过程通常发生在信使RNA的翻译水平上(也就是说,通过选择哪些信使RNA将被翻译成蛋白质)。翻译是由细胞内称为核糖体的微小机器完成的。核糖体由两部分(亚基)组成。这两个亚基彼此分离,并聚集在信使RNA上以翻译它(即,阅读它)。研究翻译与人类细胞有关,因为在癌症和几种遗传性疾病中,调节翻译的机制经常出错。翻译信使RNA的过程可以分为三个阶段,称为起始、延伸和终止。起始包括两个亚基结合在一起的信使RNA,并开始翻译(阅读它)。之后,这两个亚基在阅读信使RNA时沿着信使RNA移动(延伸),直到它们到达末端(终止)。翻译通常是在开始的地方进行管理的(即,通过决定哪些mRNA被翻译)。然而,翻译也可以在延伸的水平上进行调节,通常是通过“冻结”信使RNA上的核糖体并停止阅读过程。这种现象被称为核糖体“停滞”。研究人体复杂过程的一种方法是使用模型生物:这是一种简单的生物,但足够相似,可以让我们了解自己。在我的实验室里,我们研究了一种简单的酵母--由一个单细胞组成--它可以对许多不同类型的压力做出反应。使用这种酵母,我们发现当细胞受到压力时,它们会在信使RNA的特定位置停止延伸过程。有趣的是,核糖体停滞的位置是不同的,这取决于它们可获得的营养物质的种类。我们想知道这种停滞是否发生在其他情况下(我们已经尝试了3),核糖体如何“知道”何时何地停止,以及这种行为如何对细胞有益。我们希望这些信息将有助于了解人类细胞的行为,并最终帮助我们设计疾病的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan Mata其他文献
Structural characterization of a suspension bridge by mapping the temperature effects on strain response based on neural network models
- DOI:
10.1007/s13349-024-00855-0 - 发表时间:
2024-10-23 - 期刊:
- 影响因子:4.300
- 作者:
Fabiana N. Miranda;Juan Mata;João Pedro Santos;Xavier Romão - 通讯作者:
Xavier Romão
Lactose enemas plus placebo tablets vs. neomycin tablets plus starch enemas in acute portal systemic encephalopathy: A double-blind randomized controlled study
乳糖灌肠加安慰剂片与新霉素片加淀粉灌肠治疗急性门静脉系统性脑病:一项双盲随机对照研究
- DOI:
- 发表时间:
1981 - 期刊:
- 影响因子:0
- 作者:
Misael Uribe;J. Bérthier;H. Lewis;Juan Mata;J. Sierra;G. García;Javier Ramírez Acosta;M. Dehesa - 通讯作者:
M. Dehesa
The effects of added whey protein to a pre‐operative carbohydrate drink on glucose and insulin response
在术前碳水化合物饮料中添加乳清蛋白对葡萄糖和胰岛素反应的影响
- DOI:
10.1111/aas.13069 - 发表时间:
2018 - 期刊:
- 影响因子:2.1
- 作者:
Negar Karimian;M. Moustafa;Juan Mata;A. Al;Per M. Hellström;Liane S. Feldman;Franco Carli - 通讯作者:
Franco Carli
Use of expanded non-genetically modified natural killer cells (SNK01) with enhanced cytotoxicity in patients with Alzheimer's disease — Interim report of a phase I trial
- DOI:
10.1016/j.jns.2023.121460 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Clemente Zuniga Gil;Blanca Acosta;Rufino Menchaca Diaz;Cesar Amescua;Lucia Hui;Sean Hong;Hank Lee;Juan Mata;Paul Chang;Katia Betito;Paul Song - 通讯作者:
Paul Song
A systematic review of synthetic and biologic materials for abdominal wall reinforcement in contaminated fields
- DOI:
10.1007/s00464-014-3499-5 - 发表时间:
2014-03-12 - 期刊:
- 影响因子:2.700
- 作者:
Lawrence Lee;Juan Mata;Tara Landry;Kosar A. Khwaja;Melina C. Vassiliou;Gerald M. Fried;Liane S. Feldman - 通讯作者:
Liane S. Feldman
Juan Mata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan Mata', 18)}}的其他基金
Genome-wide translational responses to stress: a focus on initiation
全基因组对压力的翻译反应:关注启动
- 批准号:
BB/S015833/1 - 财政年份:2019
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Translational responses to stress: a global view
对压力的转化反应:全球视野
- 批准号:
BB/N007697/1 - 财政年份:2016
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Exploring the hidden small proteome of a unicellular eukaryote
探索单细胞真核生物隐藏的小蛋白质组
- 批准号:
BB/M021483/1 - 财政年份:2015
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Role of RNA-binding proteins in the control of RNA turnover: a genome-wide approach
RNA结合蛋白在控制RNA周转中的作用:全基因组方法
- 批准号:
BB/J007153/1 - 财政年份:2012
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Co-translational assembly of multiprotein complexes: a systems biology approach
多蛋白复合物的共翻译组装:系统生物学方法
- 批准号:
BB/G011869/1 - 财政年份:2009
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
Role of RNA-binding proteins in cellular differentiation: a global approach
RNA 结合蛋白在细胞分化中的作用:一种全局方法
- 批准号:
G0501168/1 - 财政年份:2006
- 资助金额:
$ 80.67万 - 项目类别:
Research Grant
相似国自然基金
基于慧眼-HXMT宽能段观测的X射线吸积脉冲星磁场研究
- 批准号:12373051
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
- 批准号:51973054
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
CFHTLS-Wide和CFHTLS-Stripe82观测的弱引力透镜星系团巡天
- 批准号:11103011
- 批准年份:2011
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
精神分裂症全基因组关联研究的通路分析及验证
- 批准号:81071087
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
非吸烟肺癌表皮生长因子受体基因相关非编码小RNA差异表达研究
- 批准号:81071914
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
超高频超宽带系统射频基带补偿理论与技术的研究
- 批准号:61001097
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
孤独症全基因组关联第二阶段研究
- 批准号:81071110
- 批准年份:2010
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
- 批准号:
10722515 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Bi-functional photo-crosslinking (BFPX) for genome-wide study of protein-nucleic acid interactions
双功能光交联 (BFPX) 用于蛋白质-核酸相互作用的全基因组研究
- 批准号:
10593666 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Genome-wide Mapping of Ribosome Occupancies with Inhibitor-Induced mRNA Covalent Labeling
通过抑制剂诱导的 mRNA 共价标记进行核糖体占据的全基因组图谱
- 批准号:
10575642 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Error-suppressed whole genome sequencing for genotoxicant-induced structural variant detection
用于基因毒物诱导的结构变异检测的错误抑制全基因组测序
- 批准号:
10590370 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
A comprehensive whole genome sequence scan for positive selection in southern Africa
对南部非洲进行全面的全基因组序列扫描以进行正选择
- 批准号:
10732789 - 财政年份:2023
- 资助金额:
$ 80.67万 - 项目类别:
Understanding the Genome Maintenance Function of the Fragile X Protein (FMRP)
了解脆性 X 蛋白 (FMRP) 的基因组维持功能
- 批准号:
10511129 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
Altering the chromostasis and genome stability by modulating histone methylation
通过调节组蛋白甲基化改变染色质和基因组稳定性
- 批准号:
10467535 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
Genome-wide mapping and characterization of exitrons in human cancer
人类癌症中激子的全基因组图谱和表征
- 批准号:
10362364 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
Understanding the Genome Maintenance Function of the Fragile X Protein (FMRP)
了解脆性 X 蛋白 (FMRP) 的基因组维持功能
- 批准号:
10661830 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别:
Altering the chromostasis and genome stability by modulating histone methylation
通过调节组蛋白甲基化改变染色质和基因组稳定性
- 批准号:
10696240 - 财政年份:2022
- 资助金额:
$ 80.67万 - 项目类别: