Symmetric functions and Hodge polynomials

对称函数和霍奇多项式

基本信息

  • 批准号:
    DP170102648
  • 负责人:
  • 金额:
    $ 22.99万
  • 依托单位:
  • 依托单位国家:
    澳大利亚
  • 项目类别:
    Discovery Projects
  • 财政年份:
    2017
  • 资助国家:
    澳大利亚
  • 起止时间:
    2017-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This project aims to explain a connection between two seemingly disparate mathematical notions: mixed Hodge polynomials of certain varieties, naturally arising in algebraic geometry, and Macdonald polynomials from the theory of symmetric functions. This project will resolve this connection using symmetric function theory, algebraic combinatorics and representation theory. This project could enhance Australia's international reputation in algebraic combinatorics, combinatorial representation theory and algebraic geometry.
该项目旨在解释两个看似不同的数学概念之间的联系:代数几何中自然出现的某些种类的混合霍奇多项式,以及来自对称函数理论的麦克唐纳多项式。该项目将利用对称函数理论、代数组合学和表示论来解决这种联系。该项目可以提高澳大利亚在代数组合学、组合表示论和代数几何方面的国际声誉。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Prof S. Ole Warnaar其他文献

Prof S. Ole Warnaar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Prof S. Ole Warnaar', 18)}}的其他基金

Elliptic special functions
椭圆特殊函数
  • 批准号:
    DP140101186
  • 财政年份:
    2014
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Discovery Projects
The Mukhin-Varchenko and Rogers-Ramanujan conjectures
Mukhin-Varchenko 和 Rogers-Ramanujan 猜想
  • 批准号:
    DP110101234
  • 财政年份:
    2011
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Discovery Projects
Macdonald polynomials: Combinatorics and representations
麦克唐纳多项式:组合学和表示
  • 批准号:
    DP0879951
  • 财政年份:
    2008
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Discovery Projects

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    2894877
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    BB/Y512527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
  • 批准号:
    BB/X018512/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
  • 批准号:
    2305691
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
  • 批准号:
    2340722
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 22.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了