Shaping the neutrophil: morphological, genomic, and functional maturation

塑造中性粒细胞:形态、基因组和功能成熟

基本信息

  • 批准号:
    BB/Y004752/1
  • 负责人:
  • 金额:
    $ 109.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Neutrophils are the most numerous white blood cell (millions per millilitre of blood) and are crucial for defending us against pathogens. At the same time the neutrophil is the most short-lived white blood cell (hours to days). Hence, billions of neutrophils need to be produced by the bone marrow every day to keep the numbers in the blood stable. When these numbers drop due to disease and/or drug treatments, the patient is exposed to an acute threat of severe infections. Additionally, changes in the neutrophil production process, leading to the release of immature, dysfunctional, or hyperactive neutrophils, have been implicated in many common chronic inflammatory diseases and cancer. . Despite the importance of healthy neutrophil production, also called granulopoiesis, the molecular mechanisms driving this process are poorly understood. During granulopoiesis, progenitor cells go through changes and specializations to become mature, fully functional neutrophils. One of the most notable and extensive changes happens to the cell's nucleus. Over the course of multiple days, a simple, round nucleus changes shape to become a complex, segmented nucleus consisting of multiple lobes. The shape of the nucleus has been used for decades to signal how far the neutrophil maturation in the bone marrow has progressed, yet no-one understands why or how this unique shape is formed. This is partly because it has been difficult to directly link the nuclear shape to the more detailed descriptions of neutrophil maturation stage provided by other technologies. Our research group has developed a novel method to define nuclear shape in much more detail and in live cells, aided by state-of-the-art 3D microscopy and Artificial Intelligence. Here, we propose to elucidate the molecular programming of neutrophil nuclear shape for the first time. We suspect the gradual changes in nuclear shape are correlated to the gradual acquisition of key neutrophil functionalities during granulopoiesis, as has been suggested before by us and others. Hence an improved understanding of the molecular pathways that initiate and drive these spectacular changes will improve our understanding of the crucial process of granulopoiesis and how we might manipulate or stimulate it.The nucleus' main function is to safely and tightly package the DNA, while also allowing the activation of specific genes encoded in the DNA. The activation of a unique set of genes determines cellular functionality and behaviour. To better understand the molecular mechanisms behind the changes seen during granulopoiesis, we propose to study the nucleus at different levels of magnitude. We will analyse interactions between DNA regions both far apart and DNA regions closer together. This will flag the genes that likely have a role in driving granulopoiesis. We expect for the first time to link the nuclear shape, DNA interactions, and genetic programming during neutrophil maturation, to obtain a comprehensive picture of the drivers of granulopoiesis. We will use bioinformatics solutions to tie these different novel datasets together for improved interpretation. Next, the most promising drivers of granulopoiesis will be removed from neutrophils by gene editing techniques. This will allow us to directly assess the nuclear shape, functionality, and behaviour of the edited cells, validating the role of the putative drivers in changing nuclear shape and/or neutrophil function during granulopoiesis.The proposed work will greatly improve our understanding of the molecular programming of neutrophil production, a fundamental process critical to maintaining our health. This will ultimately bridge the existent sporadic mouse and human datasets and will open up possibilities for more selective interference with neutrophil functions.
中性粒细胞是数量最多的白细胞(每毫升血液中有数百万个),对保护我们免受病原体的侵害至关重要。同时,中性粒细胞是寿命最长的白细胞(几小时到几天)。因此,骨髓每天需要产生数十亿的中性粒细胞,以保持血液中的中性粒细胞数量稳定。当这些数字由于疾病和/或药物治疗而下降时,患者就面临严重感染的急性威胁。此外,中性粒细胞生成过程的改变,导致未成熟、功能失调或过度活跃的中性粒细胞的释放,与许多常见的慢性炎症性疾病和癌症有关。尽管健康的中性粒细胞产生(也称为粒细胞生成)很重要,但驱动这一过程的分子机制尚不清楚。在粒细胞形成过程中,祖细胞经过变化和特化成为成熟的、功能齐全的中性粒细胞。最显著和最广泛的变化之一发生在细胞核上。在数天的过程中,一个简单的圆形细胞核会改变形状,变成一个由多个叶组成的复杂的、分段的细胞核。几十年来,细胞核的形状一直被用来指示骨髓中中性粒细胞成熟的进展程度,但没有人知道为什么或如何形成这种独特的形状。这部分是因为很难将核形状与其他技术提供的中性粒细胞成熟阶段的更详细描述直接联系起来。我们的研究小组已经开发出一种新的方法,在最先进的3D显微镜和人工智能的帮助下,在活细胞中更详细地定义核形状。在此,我们首次提出阐明中性粒细胞核形状的分子编程。我们怀疑核形状的逐渐变化与粒细胞形成过程中关键中性粒细胞功能的逐渐获得有关,正如我们和其他人之前提出的那样。因此,对启动和驱动这些惊人变化的分子途径的更好理解将提高我们对颗粒生成的关键过程的理解,以及我们如何操纵或刺激它。细胞核的主要功能是安全和紧密地包裹DNA,同时也允许激活DNA中编码的特定基因。一组独特基因的激活决定了细胞的功能和行为。为了更好地理解颗粒形成过程中所见变化背后的分子机制,我们建议在不同的量级水平上研究细胞核。我们将分析DNA区域之间的相互作用,包括距离较远的DNA区域和距离较近的DNA区域。这将标记可能在驱动颗粒生成中起作用的基因。我们期望首次将中性粒细胞成熟过程中的核形状、DNA相互作用和遗传编程联系起来,从而全面了解粒细胞形成的驱动因素。我们将使用生物信息学解决方案将这些不同的新数据集联系在一起,以改进解释。接下来,最有希望的粒细胞生成驱动因素将通过基因编辑技术从中性粒细胞中去除。这将使我们能够直接评估编辑细胞的核形状、功能和行为,验证在粒细胞形成过程中改变核形状和/或中性粒细胞功能的假定驱动因素的作用。所提出的工作将大大提高我们对中性粒细胞生产的分子编程的理解,中性粒细胞生产是维持我们健康的关键基本过程。这将最终将现有的零星小鼠和人类数据集连接起来,并将为中性粒细胞功能的选择性干扰开辟可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irina Udalova其他文献

Irina Udalova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irina Udalova', 18)}}的其他基金

Targeted modulation of neutrophil activity: impact on intestinal immunopathology
中性粒细胞活性的靶向调节:对肠道免疫病理学的影响
  • 批准号:
    MR/X000605/1
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Research Grant
CO-REGULATION OF MACROPHAGE INFLAMMATORY PHENOTYPE BY IRF5 AND RELA
IRF5 和 RELA 对巨噬细胞炎症表型的共同调控
  • 批准号:
    MR/J001899/1
  • 财政年份:
    2012
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Research Grant
SYSTEMATIC QUANTITATIVE ANALYSIS OF NF-kappaB CO-ACTIVATORS
NF-κB 共激活剂的系统定量分析
  • 批准号:
    G0700818/1
  • 财政年份:
    2007
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Research Grant
DISSECTING THE FUNCTION OF INDIVIDUAL NF-kappaB SUBUNITS IN INFLAMMATION
剖析单个 NF-kappaB 亚基在炎症中的功能
  • 批准号:
    G0501087/1
  • 财政年份:
    2006
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Research Grant

相似国自然基金

骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
IFITM1+ IL1RAP+ neutrophil通过调控巨噬细胞表型转换驱动ALPPS肝再生的机制研究
  • 批准号:
    82370624
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于Neutrophil-DCs-naive T细胞轴研究“脱敏定喘汤”调体治疗中性粒细胞型过敏性哮喘的机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigating hepatic p53-mediated neutrophil suppression in non-alcoholic steatohepatitis
研究非酒精性脂肪性肝炎中肝脏 p53 介导的中性粒细胞抑制
  • 批准号:
    MR/X018512/1
  • 财政年份:
    2024
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Research Grant
Neutrophil-Specific PET Cellular Imaging for ARDS
ARDS 中性粒细胞特异性 PET 细胞成像
  • 批准号:
    23K24288
  • 财政年份:
    2024
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
胃がん術前Neutrophil extracellular traps(NETs)に着目した橋渡し研究
胃癌手术前关注中性粒细胞胞外陷阱(NET)的转化研究
  • 批准号:
    24K11846
  • 财政年份:
    2024
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of the circadian rhythm in the regulation of the tumor microenvironment of non-small cell cancer
昼夜节律在非小细胞癌肿瘤微环境调节中的作用
  • 批准号:
    478693
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Operating Grants
The formation and degradation of neutrophil and eosinophil extracellular traps in otitis media
中耳炎中中性粒细胞和嗜酸性粒细胞胞外陷阱的形成和降解
  • 批准号:
    23K08953
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bacteriology Core
细菌学核心
  • 批准号:
    10549642
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
MRC TS Award: Regulation of neutrophil functions by cell cycle proteins
MRC TS 奖:细胞周期蛋白调节中性粒细胞功能
  • 批准号:
    MR/X023087/1
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Fellowship
Does SFTS virus infection impair host neutrophil function and increase the risk of mycosis superinfections?
SFTS 病毒感染是否会损害宿主中性粒细胞功能并增加真菌病重复感染的风险?
  • 批准号:
    23K15372
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Modulation of the biliary immune niche by the microbiome
微生物组对胆道免疫生态位的调节
  • 批准号:
    10349405
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 109.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了