Mechanisms underlying homeotic function across developmental transitions

发育转变过程中同源异型功能的潜在机制

基本信息

  • 批准号:
    BB/Y006860/1
  • 负责人:
  • 金额:
    $ 111.29万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The cellular components of the nervous system form and function under the directions of the genes. But how does the genetic program that guides the formation of the nervous system switch into the program that controls the physiology of mature neurons in adult organisms? We have recently explored this question in the fruit fly Drosophila melanogaster, an excellent model system in modern genetics, and discovered that the Hox genes - which encode a group of key developmental genes evolutionarily conserved from insects to humans - control both the development, as well as the physiological properties of mature neurons modulating behaviour. This system, therefore, offers an excellent opportunity to determine the mechanisms by which specific genes control the biology of neurons during their differentiation and mature life in the adult organism. This is important given that it will inform us on how cells control their internal genetic programmes to undergo 'cellular transitions': points at which the biology of cells changes quickly and dramatically, transforming a cell 'under development' into the final, mature cell that will remain in the adult organism for a long time. Because at a fundamental level, neuronal development and function follow common principles across all animals, knowledge produced from our work in the fly is expected to impact the understanding of the fundamental neurobiological processes in other species too, including humans. The plan exploits the modern Drosophila toolkit and combines the use of genetic techniques to label a specific subset of neurons, termed dopaminergic neurons, which play key roles in movement control in insects as well as in mammals. Through this approach we will:1) Artificially reduce the expression of the Hox genes, and use advanced cell-sorting techniques and modern RNA sequencing to determine the effects of this treatment on the genetic programme of dopaminergic neurons changes, obtaining a catalogue of all genes whose expression is under Hox gene control. 2) We will then use the gene lists produced above to generate and test mechanistic models to explain how the Hox genes might control gene networks within dopaminergic neurons, thus allowing them to develop and function normally. 3) In the last unit of work we will determine how genes under Hox-control relate to specific cellular roles in developing and mature dopaminergic neurons.The work will thus help us understand how genes mould the biology of neurons within the normal animal, and contribute to decode the genetic basis of animal development, neurophysiology and behaviour. Our research will also contribute to the understanding of how neurons in general establish their identity within the developing and mature 'healthy' brain, providing a framework for the identification of changes linked to neuro-developmental and neurodegenerative diseases. The basic knowledge on the underpinnings of neuronal transitions is expected to also add to the field of stem cell biology and regenerative medicine, where cells are taken into specific fates via artificial manipulations to understand processes in health and disease.The project stems from our close understanding of the Hox gene system, strong track record in the analysis of gene function in flies, a wealth of preliminary data, and our proved ability to investigate developmental and physiological processes in neurons.The work will be developed within the highly collaborative and interdisciplinary community of Sussex Neuroscience, an internationally-leading centre for neuroscience research with more than 50 neuroscience research labs based on the Sussex campus, and will further benefit from the input of expert collaborators in Sussex, Oxford and Germany who will be sharing their technical expertise during the development of specific aspects of the project. Altogether, this puts us in an ideal position to develop this project successfully within the period of the grant.
神经系统的细胞成分在基因的指导下形成和发挥作用。但是,指导神经系统形成的遗传程序是如何转换成控制成年生物体中成熟神经元生理学的程序的呢?我们最近在果蝇(Drosophila melanogaster)中探索了这个问题,果蝇是现代遗传学中的一个优秀模型系统,并发现Hox基因-编码一组从昆虫到人类进化上保守的关键发育基因-控制发育以及成熟神经元调节行为的生理特性。因此,该系统提供了一个很好的机会,以确定特定基因控制神经元在成年生物体中分化和成熟过程中的生物学机制。这一点很重要,因为它将告诉我们细胞如何控制其内部遗传程序进行“细胞转变”:细胞生物学快速而显著地改变的点,将“发育中”的细胞转化为最终的成熟细胞,这些细胞将在成年生物体中保留很长一段时间。因为在基本层面上,神经元的发育和功能遵循所有动物的共同原则,所以我们在果蝇中的工作所产生的知识预计也会影响对其他物种(包括人类)基本神经生物学过程的理解。该计划利用现代果蝇工具包,并结合使用遗传技术来标记一个特定的神经元子集,称为多巴胺能神经元,它在昆虫和哺乳动物的运动控制中发挥关键作用。通过这种方法,我们将:1)减少Hox基因的表达,并使用先进的细胞分选技术和现代RNA测序来确定这种治疗对多巴胺能神经元变化的遗传程序的影响,获得所有表达受Hox基因控制的基因的目录。2)然后,我们将使用上面产生的基因列表来生成和测试机制模型,以解释Hox基因如何控制多巴胺能神经元内的基因网络,从而使它们能够正常发育和发挥功能。3)在最后一个单元的工作中,我们将确定在Hox控制下的基因如何与发育和成熟的多巴胺能神经元中的特定细胞作用相关,从而帮助我们理解基因如何塑造正常动物中的神经元生物学,并有助于解码动物发育,神经生理学和行为的遗传基础。我们的研究还将有助于了解神经元一般如何在发育和成熟的“健康”大脑中建立自己的身份,为识别与神经发育和神经退行性疾病相关的变化提供框架。关于神经元转变基础的基本知识预计也将增加干细胞生物学和再生医学领域,通过人工操作将细胞带入特定的命运,以了解健康和疾病的过程。该项目源于我们对Hox基因系统的深入了解,在果蝇基因功能分析方面的良好记录,丰富的初步数据,以及我们在神经元发育和生理过程研究方面的成熟能力。这项工作将在苏塞克斯神经科学的高度协作和跨学科社区内开展,苏塞克斯神经科学是一个国际领先的神经科学研究中心,拥有50多个基于苏塞克斯校园的神经科学研究实验室,并将进一步受益于苏塞克斯专家合作者的投入,牛津大学和德国,他们将在项目的具体方面的发展过程中分享他们的技术专长。总之,这使我们处于一个理想的位置,在赠款期间成功地开发这个项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claudio Alonso其他文献

15-P026 The evolution of gene regulation in insects: A study on molecular repressors of bristle patterns in flies
  • DOI:
    10.1016/j.mod.2009.06.670
  • 发表时间:
    2009-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marta Costa;Pat Simpson;Claudio Alonso
  • 通讯作者:
    Claudio Alonso

Claudio Alonso的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claudio Alonso', 18)}}的其他基金

The role of microRNA regulation in a Drosophila model of Huntington disease
microRNA 调控在亨廷顿病果蝇模型中的作用
  • 批准号:
    MR/S011609/1
  • 财政年份:
    2019
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Research Grant
In vivo analysis of the coupling between alternative splicing poly-adenylation and miRNA regulation in the Drosophila Hox gene Ultrabithorax
果蝇 Hox 基因 Ultrabithorax 中选择性剪接多腺苷酸化与 miRNA 调控之间耦合的体内分析
  • 批准号:
    BB/E01173X/2
  • 财政年份:
    2008
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Research Grant
In vivo analysis of the coupling between alternative splicing poly-adenylation and miRNA regulation in the Drosophila Hox gene Ultrabithorax
果蝇 Hox 基因 Ultrabithorax 中选择性剪接多腺苷酸化与 miRNA 调控之间耦合的体内分析
  • 批准号:
    BB/E01173X/1
  • 财政年份:
    2007
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Research Grant

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Standard Grant
World in your hand: Investigating the underlying mechanism of thermal material recognition and its interaction with multisensory information
手中的世界:研究热材料识别的基本机制及其与多感官信息的相互作用
  • 批准号:
    23K24934
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding the mechanisms underlying noise-induced damage of hair cell ribbon synapses
了解噪声引起的毛细胞带突触损伤的机制
  • 批准号:
    BB/Z514743/1
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Fellowship
Understanding the mechanisms underlying the detrimental effects of NAFLD on the brain
了解 NAFLD 对大脑产生有害影响的机制
  • 批准号:
    MR/X033287/1
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Fellowship
MCA Pilot PUI: Neural Signaling and Mechanisms Underlying Sensory Integration and Plasticity
MCA Pilot PUI:感觉统合和可塑性背后的神经信号和机制
  • 批准号:
    2322317
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Standard Grant
CAREER: Mechanisms Underlying Temporal Integration of BMP Signaling in Cell Fate Decisions
职业:细胞命运决定中 BMP 信号时间整合的潜在机制
  • 批准号:
    2340659
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Continuing Grant
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Continuing Grant
Mapping the neuronal functional architecture underlying appetite control in humans at the extremes of bodyweight
绘制极端体重下人类食欲控制的神经元功能结构
  • 批准号:
    BB/X014207/1
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: SPRF: Mechanisms Underlying Perceptual Learning of Accented Speech
博士后奖学金:SPRF:口音感知学习的机制
  • 批准号:
    2303087
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Fellowship Award
The underlying dynamic exchange that dictates serine protease function
决定丝氨酸蛋白酶功能的潜在动态交换
  • 批准号:
    2332239
  • 财政年份:
    2024
  • 资助金额:
    $ 111.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了