ALMOND: Agriculture Living Machine of Operational Nano Droplets
ALMOND:可操作纳米液滴的农业生命机器
基本信息
- 批准号:BB/Y008537/1
- 负责人:
- 金额:$ 208.5万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Industrialisation of the agricultural sector has been essential for feeding the growing global population, but has resulted in increased chemical burden on ecosystems with the use of chemical pesticides and insecticides to protect crop growth.The global seed treatment market size was valued at $13.4B in 2022 and is expected to grow ~10 % annually until 2030. US farmers annually spend >$575 million on fungicides to provide a commercial crop gain of c.$13 billion. This reflects the huge role of agrichemicals in current usage to maintain global food supplies.The ecological impacts of chemical pesticides and insecticides, including environmental persistence, ecosystem toxicity, water contamination, foodchain accumulation and emerging resistance, have become increasingly apparent and have seen a move away from their use. However, alternative solutions are not without challenge. There is increasing interest in harnessing naturally occurring microorganisms (biopesticides) in or on soil or within seed-coatings to help protect crops, and this approach has seen much success with species such as Bacillus thuringiensis and Lysinbacillus sphaericus, and insect-active fungi and viruses. However, a number of highly promising specific pesticide and insecticides biocactive molecules made by micro-organisms that can protect crops are difficult to harness in practice due to potential concerns about the micro-organisms being able to cause infection in people or animals, until proven safe. Similarly, the active compounds themselves are often unstable or difficult to purify, so these are challenging to use alone. We have identified novel bioactive polyyne, cepacin in Burkholderia bacteria and discovered its biosynthetic pathway. Cepacin has fungicidal activity that protects germinating crops against damping off disease, as such these specialised metabolites represent promising novel bioactives.In this project we will use cutting edge 3D-printed microfluidics to produce non-reproducing, environmentally benign artificial cells - artificial engineered materials inspired by biology based on the cell membrane. These artificial cells contain networked compartments, separated by lipid bilayers, much like biological cells, and can serve as biochemical microfactories to synthesis these promising pesticide and insecticide biochemicals locally, to enhance crop health. By formulating these artificial cells as crop seed coatings in biodegradable hydrogel shells, the protective effects are localised exactly where needed. The artificial cells will be programmed to respond to genetic cues when the seed germinates, to activate pesticide protection. In this way the artificial cells can respond in different ways in different circumstances of plant health, disease or in the presence of different insect predators.Importantly these systems afford flexibility and a combinatorial ability to assemble pathways and toxins not normally found together, without creating transgenic organisms that that could prove challenging to license. In this way, we can use different active biomolecules in combination in a single synergistic formulation and also combine with existing biopesticides for enhanced function, that includes nitrogen fixation for enhanced crop growth and soil health and carbon capture and conversion to energy to power the artificial cell metabolism .
农业部门的工业化对于养活不断增长的全球人口至关重要,但由于使用化学农药和杀虫剂来保护作物生长,导致生态系统的化学负担增加。2022年全球种子处理市场规模为134亿美元,预计到2030年将以每年约10%的速度增长。美国农民每年在杀真菌剂上花费超过5.75亿美元,以提供1000万美元的商业作物收益。一百三十亿化学农药和杀虫剂的生态影响,包括环境持久性、生态系统毒性、水污染、食物链积累和新出现的抗药性,已变得越来越明显,并已逐渐停止使用。然而,替代解决方案并非没有挑战。人们越来越关注利用土壤中或土壤上或种子包衣内天然存在的微生物(生物农药)来帮助保护作物,这种方法在苏云金芽孢杆菌和球形赖氨酸芽孢杆菌等物种以及昆虫活性真菌和病毒方面取得了很大成功。然而,由微生物产生的可以保护作物的许多非常有前途的特定农药和杀虫剂生物活性分子在实践中难以利用,因为在证明安全之前,可能担心微生物能够引起人或动物的感染。同样,活性化合物本身通常不稳定或难以纯化,因此单独使用这些化合物具有挑战性。我们在伯克霍尔德氏菌中发现了新的生物活性多炔,头孢菌素,并发现了它的生物合成途径。Cepacin具有杀菌活性,可以保护发芽的作物免受立枯病的侵害,因此这些特殊的代谢产物代表了有前途的新型生物活性物质。在这个项目中,我们将使用尖端的3D打印微流体技术来生产非繁殖性的、环境友好的人工细胞--基于细胞膜的生物学灵感的人工工程材料。这些人工细胞包含由脂质双层分隔的网络化隔室,非常像生物细胞,并且可以作为生化微型工厂在本地合成这些有前途的农药和杀虫剂生物化学品,以增强作物健康。通过将这些人工细胞配制成可生物降解的水凝胶壳中的作物种子涂层,保护作用正好定位在需要的地方。当种子发芽时,人工细胞将被编程以响应遗传信号,以激活杀虫剂保护。通过这种方式,人工细胞可以在植物健康、疾病或不同昆虫捕食者存在的不同情况下以不同的方式做出反应。重要的是,这些系统提供了灵活性和组合能力,可以组装通常不在一起发现的途径和毒素,而不会产生转基因生物,这可能会证明具有挑战性的许可。通过这种方式,我们可以在单一协同制剂中组合使用不同的活性生物分子,并且还与现有的生物农药联合收割机组合以增强功能,包括用于增强作物生长和土壤健康的固氮以及碳捕获和转化为能量以驱动人工细胞代谢。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oliver Castell其他文献
GENERATION OF COMPLEX EMULSIONS USING MONOLITHIC, DUAL-MATERIAL 3D-PRINTED MICROFLUIDIC DEVICES
使用整体双材料 3D 打印微流体装置生成复杂乳液
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Jin Li;Pantelitsa Dimitriou;Oliver Castell;D. Barrow - 通讯作者:
D. Barrow
Radiofrequency and microwave 3D bioprinting of emulsion gel for dysphagia diets
用于吞咽困难饮食的乳液凝胶的射频和微波三维生物打印
- DOI:
10.1038/s41598-025-06804-1 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:3.900
- 作者:
Shuntaro Tsubaki;Ayane Ide;Daniel R. Slocombe;Oliver Castell;Ibrahim Maamoun;Noriyuki Igura - 通讯作者:
Noriyuki Igura
Oliver Castell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
REU Site: Controlled Environment Agriculture (CEAfREU)
REU 站点:受控环境农业 (CEAfREU)
- 批准号:
2349765 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Standard Grant
Research Infrastructure: Mid-scale RI-1 (MI:IP): X-rays for Life Sciences, Environmental Sciences, Agriculture, and Plant sciences (XLEAP)
研究基础设施:中型 RI-1 (MI:IP):用于生命科学、环境科学、农业和植物科学的 X 射线 (XLEAP)
- 批准号:
2330043 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Cooperative Agreement
COUSIN: Crop Wild Relatives utilisation and conservation for sustainable agriculture
表弟:作物野生近缘种的利用和保护以实现可持续农业
- 批准号:
10090949 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
EU-Funded
NSF Engines: North Dakota Advanced Agriculture Technology Engine
NSF 发动机:北达科他州先进农业技术发动机
- 批准号:
2315315 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Cooperative Agreement
In Search of Future Farmers: Comparative Research on Young People's Exit from Agriculture in Rural Indonesia, Japan and Nepal
寻找未来农民:印度尼西亚、日本和尼泊尔农村年轻人退出农业的比较研究
- 批准号:
23K22187 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Novel Biofertiliser for Sustainable Agriculture: Tackling Phosphorus Crisis
用于可持续农业的新型生物肥料:解决磷危机
- 批准号:
IM240100158 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Mid-Career Industry Fellowships
Rural Development and Community Resiliency Through Agriculture Heritage Tourism
通过农业遗产旅游促进农村发展和社区复原力
- 批准号:
23K21819 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Arboricrop: next generation agriculture using real-time information from trees crops
Arboricrop:利用树木作物实时信息的下一代农业
- 批准号:
10087410 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Collaborative R&D
Advancing Controlled Environment Agriculture (CEA) with Dynamic LED Lighting Systems and Artificial Intelligence
利用动态 LED 照明系统和人工智能推进受控环境农业 (CEA)
- 批准号:
BB/Z514330/1 - 财政年份:2024
- 资助金额:
$ 208.5万 - 项目类别:
Research Grant














{{item.name}}会员




