Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data

利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习

基本信息

  • 批准号:
    BB/Y513878/1
  • 负责人:
  • 金额:
    $ 30.12万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Determining the structure of biomolecules is the goal of structuralbiology and is essential to understand biological mechanismsresponsible for life and in drug discovery. Biological macromoleculescan be thought of as complex machines that perform complexoperations in living cells. These dynamic machines pass throughvarious conformations in the course of their actions and a completeunderstanding of their working requires the determination of multipleconformations.Single particle Electron Cryo-Microscopy (Cryo-EM) has emerged as a unique method to determine molecular structures at near-atomic resolution. Achieving high-resolution estimation of structures of dynamic protein complexes requires large numbers of images and computationally intensive algorithms. Such reconstruction problems have been often approached by devising methods that use information about the imaging procedure and the properties of the object that needs to be reconstructed and many remarkable breakthroughs have been achieved over the years. These computational approaches are called "model-based" methods andhave the advantage to be predictable and stable. However, they can be computationally expensive and do not always derive maximum value from complex data. In particular, they are often unable to resolve complex heterogeneous structures. In contrast "data-driven" methods like deep neural networks have demonstrated, in other contexts, a remarkable ability to improve the quality of biomedical images. The problem with many deep learning approaches is that they are not predictable in the sense that often even small deviations in the inputdata can result in a huge deviation of the output, which can have devastating effects in bio-imaging applications. Moreover, it is often very difficult to interpret what a deep network machine is really optimizing.This project will advance a new family of deep neural networks for the3-D reconstruction of dynamic protein complexes from cryo-electrondata. By working closely with structural biologists, we will put forwardapproaches that systematically embed prior knowledge and constraintsabout the signal and the physics of the data formation process into thedeep neural network architectures. We will also collaborate with Prof.M. Unser and his team from EPFL Switzerland. They will provideexpertise in the area of analysis of stability of deep neural networksand will share their experience in developing AI-based methods formolecule reconstruction from Cryo-EM data. We expect that thisapproach and these collaborations will allow us to introduce stable andinterpretable neural networks able to resolve heterogeneous biologicalstructures at a resolution that current methods cannot. The methodsproduced will be in open-source format, integrated in existingcomputational suites like CCP-EM and made available to the broadestpossible community.
确定生物分子的结构是结构生物学的目标,对于理解生命和药物发现的生物学机制至关重要。可以将生物大分子视为在活细胞中进行复杂操作的复杂机器。这些动态机器在其作用过程中通过各种构象,并且对其工作的完全理解需要确定多重构造。单个粒子电子冷冻微镜(Cryo-EM)已成为确定近原子分子分子结构的独特方法。实现动态蛋白质复合物结构的高分辨率估计需要大量图像和计算密集型算法。经常通过设计有关成像过程的信息以及需要重建的对象的特性的方法来解决此类重建问题,并且多年来已经实现了许多显着的突破。这些计算方法被称为“基于模型”的方法,并且没有可预测和稳定的优势。但是,它们在计算上可能很昂贵,并且并不总是从复杂数据中得出最大值。特别是,它们通常无法解析复杂的异质结构。相比之下,在其他情况下,像深神经网络这样的“数据驱动”方法表明,提高生物医学图像质量的能力很有能力。许多深度学习方法的问题是,它们是无法预测的,因为即使输入数据中的小偏差通常也会导致输出的巨大偏差,这在生物成像应用程序中可能会产生毁灭性的影响。此外,解释深网络机器真正优化的是非常困难的。该项目将推进一个新的深神经网络家族,用于从冷冻电子中的动态蛋白质复合物重建3-D。通过与结构生物学家紧密合作,我们将进行前瞻性操作,以系统地嵌入先验知识和约束数据形成过程的信号和物理学,并将其物理化为THEDEEP神经网络体系结构。我们还将与教授合作。 Unser和他的团队来自EPFL瑞士。他们将在深度神经网络的稳定性分析领域提供专长,将分享他们从Cryo-Em数据开发基于AI的方法Formoletecules重建方面的经验。我们预计,这种操作和这些合作将使我们能够以当前方法无法解决的解决方案来引入能够解决异质生物结构的稳定且可解释的神经网络。该方法生产的将以开源形式集成在CCP-EM等现有计算套件中,并提供给广泛的社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pier Luigi Dragotti其他文献

Deep phase retrieval: Analyzing over-parameterization in phase retrieval
深度相位检索:分析相位检索中的过度参数化
  • DOI:
    10.1016/j.sigpro.2020.107866
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Qi Yu;Jun-Jie Huang;Jubo Zhu;Wei Dai;Pier Luigi Dragotti
  • 通讯作者:
    Pier Luigi Dragotti
Smart Meter Privacy
智能电表隐私
  • DOI:
    10.1007/978-981-15-0493-8_2
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Ece Naz Erdemir;Deniz Gunduz;Pier Luigi Dragotti
  • 通讯作者:
    Pier Luigi Dragotti

Pier Luigi Dragotti的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pier Luigi Dragotti', 18)}}的其他基金

Network on multiScale Information, RePresentatIon and Estimation -- (INSPIRE)
多尺度信息、表示和估计网络——(INSPIRE)
  • 批准号:
    EP/F031157/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30.12万
  • 项目类别:
    Research Grant

相似国自然基金

基于视图对应及无监督学习的多视图三维物体点云与隐式曲面重建
  • 批准号:
    62302335
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于深度渐进学习的CT图像重建和多任务协同式AI辅助诊断模型研究
  • 批准号:
    62371190
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于采样与重建学习的可变采样率磁共振成像研究
  • 批准号:
    62306320
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
缪子反常磁矩实验中基于深度学习的径迹重建和磁场测量研究
  • 批准号:
    12305217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于腰椎多尺度运动-力学特征的参数自学习骨重建预测模型研究
  • 批准号:
    12302420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.12万
  • 项目类别:
    Research Grant
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
  • 批准号:
    10848559
  • 财政年份:
    2023
  • 资助金额:
    $ 30.12万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 30.12万
  • 项目类别:
Novel Machine Learning-Based Event Reconstruction and Analysis for the Water Cherenkov Experiment
基于机器学习的新型水切伦科夫实验事件重建和分析
  • 批准号:
    22KF0113
  • 财政年份:
    2023
  • 资助金额:
    $ 30.12万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
BRAIN CONNECTS: Center for a pipeline of high throughput integrated volumetric electron microscopy for whole mouse brain connectomics
大脑连接:用于全小鼠大脑连接组学的高通量集成体积电子显微镜管道中心
  • 批准号:
    10665386
  • 财政年份:
    2023
  • 资助金额:
    $ 30.12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了