Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
基本信息
- 批准号:BB/Y513878/1
- 负责人:
- 金额:$ 30.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Determining the structure of biomolecules is the goal of structuralbiology and is essential to understand biological mechanismsresponsible for life and in drug discovery. Biological macromoleculescan be thought of as complex machines that perform complexoperations in living cells. These dynamic machines pass throughvarious conformations in the course of their actions and a completeunderstanding of their working requires the determination of multipleconformations.Single particle Electron Cryo-Microscopy (Cryo-EM) has emerged as a unique method to determine molecular structures at near-atomic resolution. Achieving high-resolution estimation of structures of dynamic protein complexes requires large numbers of images and computationally intensive algorithms. Such reconstruction problems have been often approached by devising methods that use information about the imaging procedure and the properties of the object that needs to be reconstructed and many remarkable breakthroughs have been achieved over the years. These computational approaches are called "model-based" methods andhave the advantage to be predictable and stable. However, they can be computationally expensive and do not always derive maximum value from complex data. In particular, they are often unable to resolve complex heterogeneous structures. In contrast "data-driven" methods like deep neural networks have demonstrated, in other contexts, a remarkable ability to improve the quality of biomedical images. The problem with many deep learning approaches is that they are not predictable in the sense that often even small deviations in the inputdata can result in a huge deviation of the output, which can have devastating effects in bio-imaging applications. Moreover, it is often very difficult to interpret what a deep network machine is really optimizing.This project will advance a new family of deep neural networks for the3-D reconstruction of dynamic protein complexes from cryo-electrondata. By working closely with structural biologists, we will put forwardapproaches that systematically embed prior knowledge and constraintsabout the signal and the physics of the data formation process into thedeep neural network architectures. We will also collaborate with Prof.M. Unser and his team from EPFL Switzerland. They will provideexpertise in the area of analysis of stability of deep neural networksand will share their experience in developing AI-based methods formolecule reconstruction from Cryo-EM data. We expect that thisapproach and these collaborations will allow us to introduce stable andinterpretable neural networks able to resolve heterogeneous biologicalstructures at a resolution that current methods cannot. The methodsproduced will be in open-source format, integrated in existingcomputational suites like CCP-EM and made available to the broadestpossible community.
确定生物分子的结构是结构生物学的目标,对于理解生命和药物发现的生物机制是必不可少的。生物大分子可以被认为是在活细胞中执行复杂操作的复杂机器。这些动态机器在它们的行动过程中经历了不同的构象,完全理解它们的工作需要确定多重构象。单粒子电子冷冻显微镜(Cryo-EM)已经成为一种在近原子分辨率下确定分子结构的独特方法。要实现对动态蛋白质复合体结构的高分辨率估计,需要大量的图像和计算密集型算法。这样的重建问题通常是通过设计使用关于成像过程和需要重建的对象的属性的信息的方法来解决的,并且多年来已经取得了许多显着的突破。这些计算方法被称为“基于模型的”方法,具有可预测性和稳定性的优点。然而,它们的计算代价可能很高,而且并不总是从复杂数据中获得最大价值。特别是,它们往往无法解析复杂的异质结构。相比之下,像深度神经网络这样的“数据驱动”方法在其他情况下证明了提高生物医学图像质量的非凡能力。许多深度学习方法的问题在于它们是不可预测的,因为即使是输入数据中的微小偏差也会导致输出的巨大偏差,这在生物成像应用中可能会产生毁灭性的影响。此外,通常很难解释深度网络机器真正优化的是什么。这个项目将提出一种新的深度神经网络家族,用于从低温电子数据中三维重建动态蛋白质复合体。通过与结构生物学家的密切合作,我们将提出系统地将关于信号和数据形成过程的物理的先验知识和约束嵌入到深层神经网络结构中的方法。我们还将与瑞士EPFL的M.Unser教授和他的团队合作。他们将提供深度神经网络稳定性分析领域的专业知识,并将分享他们在开发基于人工智能的方法以从Cryo-EM数据重建分子方面的经验。我们希望这种方法和这些合作将使我们能够引入稳定和可解释的神经网络,能够以当前方法无法解决的分辨率解析不同的生物结构。产生的方法将是开源格式,集成在现有的计算套件中,如CCP-EM,并向最有可能的社区提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pier Luigi Dragotti其他文献
Enhanced accuracy in first-spike coding using current-based adaptive LIF neuron
使用基于电流的自适应 LIF 神经元提高首次尖峰编码的准确性
- DOI:
10.1016/j.neunet.2024.107043 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:6.300
- 作者:
Siying Liu;Pier Luigi Dragotti - 通讯作者:
Pier Luigi Dragotti
Multi-modal Convolutional Dictionary Learning
- DOI:
10.1109/TIP.2022.3141251 - 发表时间:
2022 - 期刊:
- 影响因子:
- 作者:
Fangyuan Gao;Xin Deng (唯一通讯作者);Mai Xu;Jingyi Xu;Pier Luigi Dragotti - 通讯作者:
Pier Luigi Dragotti
Deep phase retrieval: Analyzing over-parameterization in phase retrieval
深度相位检索:分析相位检索中的过度参数化
- DOI:
10.1016/j.sigpro.2020.107866 - 发表时间:
2021-03 - 期刊:
- 影响因子:4.4
- 作者:
Qi Yu;Jun-Jie Huang;Jubo Zhu;Wei Dai;Pier Luigi Dragotti - 通讯作者:
Pier Luigi Dragotti
Smart Meter Privacy
智能电表隐私
- DOI:
10.1007/978-981-15-0493-8_2 - 发表时间:
2019 - 期刊:
- 影响因子:10.6
- 作者:
Ece Naz Erdemir;Deniz Gunduz;Pier Luigi Dragotti - 通讯作者:
Pier Luigi Dragotti
Pier Luigi Dragotti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pier Luigi Dragotti', 18)}}的其他基金
Network on multiScale Information, RePresentatIon and Estimation -- (INSPIRE)
多尺度信息、表示和估计网络——(INSPIRE)
- 批准号:
EP/F031157/1 - 财政年份:2008
- 资助金额:
$ 30.12万 - 项目类别:
Research Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 30.12万 - 项目类别:
Research Grant
Maternal mHealth blood hemoglobin analysis with informed deep learning
通过知情深度学习进行孕产妇 mHealth 血液血红蛋白分析
- 批准号:
10566426 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Distortion Correction in Functional MRI with Deep Learning
利用深度学习进行功能 MRI 畸变校正
- 批准号:
10647991 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Deep-Learning-Augmented Quantitative Gradient Recalled Echo (DLA-qGRE) MRI for in vivo Clinical Evaluation of Brain Microstructural Neurodegeneration in Alzheimer Disease
深度学习增强定量梯度回忆回波 (DLA-qGRE) MRI 用于阿尔茨海默病脑微结构神经变性的体内临床评估
- 批准号:
10659833 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Deep learning for prediction of Mild Cognitive Impairment and Dementia of the Alzheimer's type
深度学习预测轻度认知障碍和阿尔茨海默氏症型痴呆
- 批准号:
10662094 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Deep-learning assisted photoacoustic histology for real-time intraoperative pathological diagnosis
深度学习辅助光声组织学实时术中病理诊断
- 批准号:
10642628 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Deep learning microscope for slide-free and digital histology
用于无载玻片和数字组织学的深度学习显微镜
- 批准号:
10503039 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Interpretable Deep Learning Methods to Investigate Genetics and Epigenetics of Alzheimer's Disease at a Single-Cell Resolution
可解释的深度学习方法以单细胞分辨率研究阿尔茨海默病的遗传学和表观遗传学
- 批准号:
10698166 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Deep learning Based Phenotyping and Treatment Optimization for Heart Failure with Preserved Ejection Fraction
基于深度学习的射血分数保留的心力衰竭表型分析和治疗优化
- 批准号:
10444412 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别: