Single-Nuclei Sequencing Whole Aquatic Plants to Reveal Novel Nutrient Transport Mechanisms
对整个水生植物进行单核测序,揭示新的养分运输机制
基本信息
- 批准号:BB/Z514809/1
- 负责人:
- 金额:$ 53.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aim - Controlled environment farming will be critical for future food security. This proposal aims to the biology of tiny, simplified aquatic plants to power advances in this sector.Context - Controlled environment agriculture has the potential to maintain food production in the face of increasingly extreme climactic conditions, topsoil degradation, and water scarcity. However, it requires optimisation for sustainability. Plants are often grown in these contexts without soil. Instead, essential elements they need are provided hydroponically, i.e., in a water-based solution. Nutrients in these solutions are often finite, energetically costly, and therefore unsustainable. Improving the nutrient uptake efficiency for plants grown in hydroponics is vital to realising sustainable controlled environment agriculture. The adaptations aquatic plants have made to their nutrient uptake biology represent a unique, untapped source of novel genetics for this.Duckweeds as a solution - The best aquatic plants for achieving the above are duckweeds. They are small, fast-growing, and are experiencing a current resurgence in scientific and industrial interest. 100 million years of evolution have optimised their capacity to take up nutrients from water directly into their shoot. This differs radically from most crop plants, which acquire nutrients from the soil through their roots. A better understanding of this biology will open new avenues to increased efficiency in controlled environment farming. It will also assist duckweed's adoption as a crop for these contexts, an area of growing investment motivated by their rapid growth rate and protein content comparable to soy.Experimental strategy and science - Duckweeds are ideal for understanding aquatic plant nutrient use thanks to their rapidly growing scientific resources, such as genome sequences and genetic manipulation protocols. The project will capitalise on these to achieve the following:Investigate the expression of nutrient transporters in different duckweed cell types using advanced genetic sequencing techniques. Use the data generated to identify nutrient transporters allowing duckweeds to efficiently take up nutrients from water. Use gene editing technology to verify the function of these nutrient transporters and genetic modification approaches to evaluate their impact on nutrient uptake and plant growth. Together, this will reveal how duckweeds have developed their atypical nutrient uptake abilities and explore whether these can be mimicked in non-aquatic plants.Benefits and stakeholders - improved understanding of nutrient uptake in duckweeds has the potential to:Inform the development of new crop varieties optimised for hydroponic farming. This can enhance crop nutrient use efficiency and yield, contributing to food security.Assist in their deployment as a novel crop species, for which multiple commercial and academic parties are now exploring the potential.Fundamentally advance our understanding of nutrient uptake and adaptation to the aquatic environment. To maximise the impact, I will work closely with the Australia-led international Plants for Space consortium (see LoS and in-kind support) which aims to support NASA's Artemis project and use the advances made to design ultra-modern cropping systems for use on Earth.
目标-受控环境农业对未来的粮食安全至关重要。该提案旨在研究微小的、简化的水生植物的生物学,以推动这一领域的发展。背景-受控环境农业有潜力在日益极端的气候条件、表土退化和水资源短缺的情况下维持粮食生产。然而,它需要优化可持续性。植物通常生长在这些环境中没有土壤。相反,它们需要的基本元素是通过水培提供的,即,在水基溶液中。这些溶液中的营养物质通常是有限的,能量昂贵,因此不可持续。提高水培植物的养分吸收效率对于实现可持续的受控环境农业至关重要。水生植物对它们的营养吸收生物学的适应性代表了一个独特的、尚未开发的新遗传学来源。浮萍作为一种解决方案--实现上述目标的最佳水生植物是浮萍。它们规模小,发展迅速,目前正在经历科学和工业兴趣的复苏。1亿年的进化优化了它们从水中直接吸收营养物质的能力。这与大多数农作物完全不同,农作物通过根部从土壤中获取养分。更好地了解这种生物学将为提高受控环境农业的效率开辟新的途径。实验策略和科学--由于浮萍的基因组序列和基因操作协议等科学资源迅速增长,浮萍是了解水生植物营养利用的理想选择。该项目将利用这些来实现以下目标:使用先进的基因测序技术研究不同浮萍细胞类型中营养转运蛋白的表达。使用生成的数据来识别营养转运蛋白,使浮萍能够有效地从水中吸收营养。利用基因编辑技术验证这些营养转运蛋白的功能,并通过基因改造方法评估其对营养吸收和植物生长的影响。总之,这将揭示浮萍如何发展其非典型的养分吸收能力,并探索这些能力是否可以在非水生植物中模仿。利益和利益相关者--提高对浮萍养分吸收的理解有可能:为水培农业优化的新作物品种的开发提供信息。这可以提高作物的养分利用效率和产量,有助于粮食安全。有助于将其作为一种新的作物物种进行开发,目前许多商业和学术机构正在探索其潜力。从根本上提高我们对养分吸收和适应水环境的理解。为了最大限度地发挥影响力,我将与澳大利亚领导的国际太空植物联盟密切合作,该联盟旨在支持NASA的Artemis项目,并利用所取得的进展设计用于地球的超现代种植系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Ware其他文献
The impact of a template on documentation of awake tracheal intubation.
- DOI:
10.1016/j.tacc.2019.12.306 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Alexander Ware;Laura De Neumann;Louise Davies;Kariem El-Boghdadly;Imran Ahmad - 通讯作者:
Imran Ahmad
Mid‐Infrared Perfect Absorption with Planar and Subwavelength‐Perforated Ultrathin Metal Films
平面和亚波长穿孔超薄金属薄膜的中红外完美吸收
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Z. Sakotic;Amogh Raju;Alexander Ware;F. Estévez H;Madeline Brown;Yonathan Magendzo Behar;Divya Hungund;D. Wasserman - 通讯作者:
D. Wasserman
Alexander Ware的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Gamma-ray spectroscopy of neutron-rich zirconium nuclei
富中子锆核的伽马射线能谱
- 批准号:
2877631 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Studentship
Magnetic properties of unstable nuclei: calculations of magnetic moments and distribution of nuclear magnetisation
不稳定原子核的磁特性:磁矩和核磁化强度分布的计算
- 批准号:
2782677 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Studentship
Collaborative Research: RUI: Study of Nutron-Rich Nuclei and Neutron Detector Response
合作研究:RUI:富营养核和中子探测器响应的研究
- 批准号:
2311125 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Standard Grant
The Time Variability and Duty Cycle of Active Galactic Nuclei During Quenching
淬火过程中活动星系核的时间变化和占空比
- 批准号:
2307375 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Standard Grant
Resolving surface nanobubbles as cavitation nuclei
将表面纳米气泡解析为空化核
- 批准号:
DP230100556 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Discovery Projects
Spectroscopy of exotic reflection-asymmetric atomic nuclei
奇异反射不对称原子核的光谱学
- 批准号:
2881643 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Studentship
Decay spectroscopy of nuclei close to the r-process path by using a ultra-low background beta-ray detector
使用超低背景 β 射线探测器对靠近 r 过程路径的原子核进行衰变光谱分析
- 批准号:
23K13134 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Total absorption spectroscopy (TAS) of neutron-rich nuclei relevant to nucleosynthesis of heavy elements
与重元素核合成相关的富中子核的总吸收光谱(TAS)
- 批准号:
23KJ0727 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Simultaneous independent determination of proton- and neutron-distribution radii in atomic nuclei
同时独立测定原子核中的质子和中子分布半径
- 批准号:
23KJ1535 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The role of higher-order genomic structures in cardiomyocyte nuclei under mechanical stress
机械应力下心肌细胞核中高阶基因组结构的作用
- 批准号:
23K07589 - 财政年份:2023
- 资助金额:
$ 53.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)