Ageing SLOw: Modelling Ageing in Secondary Lymphoid Organs in vitro
衰老缓慢:次级淋巴器官的体外衰老模型
基本信息
- 批准号:BB/Z515000/1
- 负责人:
- 金额:$ 53.54万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
SummaryThe failure of animal models to predict therapeutic responses in humans is a major problem. However, non-animal technologies (NATs) are emerging as a viable solution. The current lack of human-relevant preclinical models leads to costly development of drugs destined to fail and fewer drugs reaching patients1. Infectious diseases have one of the highest attrition rates, vaccine candidates have an average market entry probability of 6%2, and development from the pre-clinical stage costs an estimated £374M-£1.5BN3. Animal models are used to test and study adaptive immune responses, yet they lack essential features of human immunity. What's more, we know from the COVID19 pandemic, that using vaccines to protect over 65s is less effective than in younger age groups4. Indeed, immune function declines with age, leading to increased susceptibility to infection and failure to generate long-lasting immunity after vaccination. For seasonal influenza, one of the best studied pathogens, vaccine efficacy in the elderly ranges from 0-50%5, resulting in £100Mpa in secondary healthcare costs to the NHS6, and 90% of mortalities result from infection in over 65s7. Yet animal models cannot account for age-associated immune variation8. Resulting in few vaccines aimed specifically at this high-risk age group. The development of NATs has the potential to drive human-relevant vaccine development, increasing the chance of developing vaccines efficacious in the elderly population. This would, in-turn, relieve financial burden and capacity pressures on the NHS.Secondary lymphoid organs (SLOs), lymph nodes and tonsils, are the sites where immune responses are mounted and where immune memory is stored. Making them the ideal organ to model vaccine responses. Recently, it was shown that poor response to vaccination in the elderly is dictated not by the age of circulating immune cells, but by the aged SLO microenvironment - i.e. stromal support cells and extracellular matrix (ECM)9. Current approaches to model SLOs rely on the ability of immune cells to self-aggregate in liquid culture and lack incorporation of these critical microenvironment components10. Hydrogels provide an ideal solution, they can incorporate ECM components and recapitulate 3D stroma. Yet there are limitations to using hydrogels to bioengineer relevant NATs. While synthetic hydrogels (e.g. poly (ethylene glycol); PEG) are highly reproducible and biomechanical properties, such as stiffness and viscosity, can be precisely controlled, they lack biological activity. Also, while natural materials (e.g. collagen) have excellent bioactivity, they lack the necessary reproducibility and tuning of biomechanics11. Synthetic-biological hybrid hydrogels (e.g. PEG-collagen) are emerging - these are reproducible materials, with high bioactivity and tuneability12,13. Hence, they provide a solution for NAT development.In this proposal, I will develop NAT models of SLOs using human cells and synthetic-biological hydrogels. I aim to: 1) Develop SLO organoids that mimic healthy and aged microenvironments; 2) Understand how biomechanical changes in the SLO microenvironment affect immune function, and 3) Investigate if mechano-immunological mechanisms can be targeted in aged SLOs to enhance immune responses in the elderly.Throughout this proposal I will use organoids and synthetic-biological hybrid hydrogels, with an extensive range of systems, such as live cell imaging and single cell nanoindentation. As well as new approaches, such as Brillouin microscopy, voted one of the top 10 game-changing technologies of 2022 due to its ability to non-invasively measure the biomechanics of 3D tissues14. With these, I will model SLOs and monitor ageing and vaccine-related mechano-immunological changes in SLO microenvironments.
总结动物模型无法预测人类治疗反应是一个主要问题。但是,非动物技术(NAT)正在作为可行的解决方案出现。目前缺乏与人相关的临床前模型导致注定失败的药物的昂贵发展,而到达患者的药物较少1。传染病的属性率最高,候选疫苗的平均市场进入概率为6%2,而临时阶段的发展成本估计为3.74亿英镑至15亿英镑。动物模型用于测试和研究适应性免疫回报,但它们缺乏人类免疫的基本特征。而且,从Covid19大流行中我们知道,使用疫苗保护超过65S的效果不如年龄段4。实际上,免疫功能随着年龄的增长而下降,导致对感染的敏感性增加,并且在疫苗接种后无法产生长期的免疫层。对于季节性影响,最好的研讨会之一是,古老的疫苗效率在0-50%5的范围内,导致NHS6的二级医疗费用为100mpa,而死亡率的90%是由于65s7以上的感染而导致的。然而,动物模型无法解释与年龄相关的免疫原状8。导致很少有针对这个高风险年龄组的疫苗。 NAT的发展有可能推动与人相关的疫苗发展,从而增加了在古老人群中有效开发疫苗的机会。这将在NHS中挽救财务燃烧和容量压力。次级淋巴机器人(SLO),淋巴结和扁桃体是安装免疫反应并存储免疫记忆的部位。使它们成为建模疫苗反应的理想器官。最近,结果表明,古老的疫苗反应不佳不是由循环免疫细胞的年龄,而是由老化的SLO微环境(即基质支持细胞和细胞外基质(ECM)9)决定的。当前模型SLO的方法取决于免疫小球在液体培养中自我聚集的能力,并且缺乏工业成分10。水凝胶提供理想的溶液,它们可以结合ECM组件并概括3D基质。然而,将水凝胶用于与生物工程相关的NAT存在局限性。虽然合成水凝胶(例如聚(乙二醇); PEG)是高度可重现的,并且可以精确控制刚度和粘度等生物力学特性,但它们缺乏生物学活性。同样,虽然天然材料(例如胶原蛋白)具有出色的生物活性,但它们缺乏必要的可重复性和生物力学的调整11。合成生物混合水凝胶(例如PEG-胶原蛋白)正在出现 - 这些是可重复的材料,具有高生物活性和可刺激性12,13。因此,它们为NAT开发提供了解决方案。在此提案中,我将使用人类细胞和合成生物学氢开发SLO的NAT模型。我的目标是:1)开发模仿健康和老化微环境的SLO类器官; 2)了解SLO微环境中的生物力学变化如何影响免疫功能,并且3)调查是否可以针对老化的SLO中的机械 - 免疫学机制来增强原来的Insoids和Systems and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and and。除了布里鲁因显微镜之类的新方法外,由于其能够非侵入性测量3D组织的生物力学14,因此投票选出了2022年前10种改变游戏规则的技术之一。通过这些,我将模拟SLO微环境中的SLO并监测与疫苗相关的机械免疫学变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannah Donnelly其他文献
SAT-448 The prevalence of steatotic liver disease in young adults: applying the new nomenclature to a UK birth cohort
- DOI:
10.1016/s0168-8278(24)01869-5 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Ann Archer;Hannah Donnelly;Jon Heron;Fiona Gordon;Matthew Hickman;Kushala Abeysekera - 通讯作者:
Kushala Abeysekera
4.11 Nanoscale Surface Cues and Cell Behavior
4.11 纳米级表面线索和细胞行为
- DOI:
10.1016/b978-0-12-803581-8.10226-7 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
H. Anderson;V. Llopis;P. Sweeten;Hannah Donnelly;R. Gurden;Wich Orapiriyakul;M. Salmerón;M. Dalby;M. Tsimbouri - 通讯作者:
M. Tsimbouri
Hannah Donnelly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
活化FFAR4构建TRPM8通道低活性脱敏态对慢阻肺气道黏液冷刺激性高分泌的遏制效应研究
- 批准号:82300054
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有慢光子效应“S”体系有序阵列的构建及其C-C偶联机制
- 批准号:22379032
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于MST4-YAP-MYC信号通路的慢痞消调控氧化磷酸化水平治疗胃癌前病变的机制研究
- 批准号:82374292
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
流感病毒抑制Nrf2信号通路诱发气道上皮细胞铁自噬在慢阻肺急性加重中的机制研究
- 批准号:82300057
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于支气管上皮细胞线粒体自噬功能受损的理肺汤干预慢阻肺的机制研究
- 批准号:82305155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Modelling MHD slow body modes in solar pores and sunspot umbrae with light bridges.
使用光桥对太阳毛孔和太阳黑子本影中的 MHD 慢体模式进行建模。
- 批准号:
2745742 - 财政年份:2022
- 资助金额:
$ 53.54万 - 项目类别:
Studentship
aIDR: Improving the pitch-side diagnosis of adolescent concussion, its frequency and severity through cranial rotation modelling and ultra-slow-motion impact sequencing
aIDR:通过颅骨旋转模型和超慢动作冲击测序改善青少年脑震荡的球场侧诊断、其频率和严重程度
- 批准号:
10022750 - 财政年份:2022
- 资助金额:
$ 53.54万 - 项目类别:
Collaborative R&D
Intrahepatocellular organelle abnormalities and occult HCV that remain long-term after HCV elimination
消除 HCV 后仍长期存在的肝细胞内细胞器异常和隐匿性 HCV
- 批准号:
22K08587 - 财政年份:2022
- 资助金额:
$ 53.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploring the central mechanism of chronic pain (Nociplastic pain) using MRI
使用 MRI 探索慢性疼痛(伤害性疼痛)的中心机制
- 批准号:
16K10980 - 财政年份:2016
- 资助金额:
$ 53.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Use of thermo-fluids modelling to understand copper recovery from slow cooled slags
使用热流体模型了解从慢冷炉渣中回收铜
- 批准号:
500453-2016 - 财政年份:2016
- 资助金额:
$ 53.54万 - 项目类别:
Engage Grants Program