Microstructured silica fibres for surgical applications: A truly flexible laser scalpel.
用于外科手术的微结构二氧化硅纤维:真正灵活的激光手术刀。
基本信息
- 批准号:EP/G039097/1
- 负责人:
- 金额:$ 40.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2009
- 资助国家:英国
- 起止时间:2009 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Optical fibres and lasers are complementary technologies and in many instances one is of limited use without the other. The flexibility and guidance properties of the fibre allow the unique properties of the laser light to be maintained whilst it is flexibly delivered to wherever required, whether over a few metres for a laser welding application; a few tens or hundreds of metres for a remote sensing application or thousands of km for communications. There is an urgent technological requirement for optical fibres that can transmit laser energy in the infrared (IR) wavelength region (above 2 microns) driven by demands of exciting new applications. One such application is in laser medicine for the fibre delivery of surgical lasers: a truly flexible laser scalpel. However, nearly all optical fibres are fabricated from a glass known as silica and whilst silica is transparent to visible radiation, there are certain types of radiation that it will not transmit. In particular silica will not transmit IR wavelengths. Dramatic advances in silica fibre technology have been made in the last few years, however, with the invention of a radically different class of fibre - the photonic crystal fibre (PCF) also known as the micro-structured or holey fibre. One such fibre has a hollow core (a hollow core microstructured fibre - HCMF) where the majority of power is guided in air. In these fibres only a small fraction of light overlaps with the silica glass and hence the strong material absorption of IR energy is minimised. Recently, I (together with collaborators) have demonstrated for the first time in the world that the practical wavelength range of silica fibres need not be limited by this intrinsic material absorption. It is now possible to realise a novel all silica HCMF design that can guide into the IR region which finally paves the way to integrate silica fibre technology with emerging IR applications. The aim of this research programme is to explore the possibilities of fibre delivery for IR lasers using these novel HCMFs, which will be designed and developed by myself and my collaborators. To demonstrate the usefulness of these novel fibres I will carry out a feasibility study applying these fibres to laser surgery:Laser surgery: Certain IR lasers (e.g. Er:YAG) are particularly suitable for laser surgery because the water contained in human tissue strongly absorbs IR radiation. By precisely delivering the laser to specific areas damage to surrounding tissue can be minimised. Hence, lasers are being increasingly used in surgical procedures with a growing number of medical applications that utilise the Er:YAG laser, operating at 2.94 microns. Currently the most common method of delivery of surgical lasers is achieved using articulated arms. There are a number of shortfalls with these systems in that there are often misalignment issues, the arms are unreliable and they are difficult to install which requires a dedicated, skilled technician. Additionally, the articulated arm, although useful for delivering laser light to the patient, is perhaps less user friendly than a surgeon using a blade and there is significant restriction to movement. Therefore the benefits of using laser light for surgery are offset by the restriction to the surgeon's skill that the articulated arms can impose. A robust fibre delivery system would alleviate these problems and radically increase the usefulness of surgical lasers.All-silica fibres have many advantages over other IR guiding optical fibres currently being investigated for this purpose in particular they are; non-toxic; bio-inert; mechanically strong and very flexible. Of course, because traditional silica fibres do not guide into the IR they have not been considered previously for this application. However, the radical approach of using an HCMF to deliver a surgical laser finally paves the way to introduce silica fibre based technology to the operating table.
光纤和激光是互补的技术,在许多情况下,一个没有另一个的使用是有限的。光纤的灵活性和导向特性使激光的独特特性得以保持,同时可以灵活地传输到任何需要的地方,无论是激光焊接应用的几米;遥感应用的几十米或几百米,还是通信的数千公里。由于令人兴奋的新应用的需求,迫切需要能够传输红外(IR)波长区域(2微米以上)的激光能量的光纤。一个这样的应用是在激光医学中用于手术激光的光纤传输:真正灵活的激光手术刀。然而,几乎所有的光纤都是由称为二氧化硅的玻璃制成的,虽然二氧化硅对可见光辐射是透明的,但它不会传输某些类型的辐射。特别地,二氧化硅将不透射IR波长。然而,在过去几年中,随着一种完全不同的光纤的发明,石英光纤技术取得了巨大的进步-光子晶体光纤(PCF)也被称为微结构或多孔光纤。一种这样的光纤具有中空芯(中空芯微结构光纤- HCMF),其中大部分功率在空气中被引导。在这些光纤中,只有一小部分光与石英玻璃重叠,因此红外能量的强材料吸收被最小化。最近,我(与合作者一起)在世界上首次证明了二氧化硅纤维的实际波长范围不需要受到这种固有材料吸收的限制。现在有可能实现一种新型的全硅HCMF设计,该设计可以引导到IR区域,最终为将硅纤维技术与新兴的IR应用集成铺平了道路。这项研究计划的目的是探索使用这些新型HCMFs的红外激光器光纤传输的可能性,这些HCMFs将由我和我的合作者设计和开发。为了证明这些新型光纤的有用性,我将进行一项可行性研究,将这些光纤应用于激光手术:激光手术:某些红外激光器(如Er:YAG)特别适合激光手术,因为人体组织中含有的水强烈吸收红外辐射。通过精确地将激光输送到特定区域,可以最大限度地减少对周围组织的损伤。因此,激光器越来越多地用于外科手术,越来越多的医疗应用使用Er:YAG激光器,工作在2.94微米。目前,最常见的手术激光输送方法是使用铰接臂。这些系统存在许多不足之处,因为通常存在未对准问题,臂不可靠并且难以安装,这需要专门的熟练技术人员。此外,虽然铰接臂可用于将激光输送到患者,但可能不如外科医生使用刀片那么用户友好,并且对运动有显著的限制。因此,使用激光进行手术的益处被关节臂可能施加的对外科医生技能的限制所抵消。一个强大的光纤传输系统将缓解这些问题,并从根本上提高手术激光器的实用性。全硅光纤有许多优点,比其他红外引导光纤目前正在研究用于这一目的,特别是他们是;无毒;生物惰性;机械强度和非常灵活。当然,由于传统的二氧化硅纤维不会引导到IR中,因此之前没有考虑将它们用于该应用。然而,使用HCMF提供手术激光的激进方法最终为将基于硅纤维的技术引入手术台铺平了道路。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Silica hollow core microstructured fibers for beam delivery in industrial and medical applications
- DOI:10.3389/fphy.2015.00024
- 发表时间:2015-04
- 期刊:
- 影响因子:3.1
- 作者:J. Shephard;A. Urich;R. Carter;P. Jaworski;R. Maier;W. Belardi;F. Yu;W. Wadsworth;J. Knight;D. Hand
- 通讯作者:J. Shephard;A. Urich;R. Carter;P. Jaworski;R. Maier;W. Belardi;F. Yu;W. Wadsworth;J. Knight;D. Hand
Flexible delivery of Er:YAG radiation at 2.94 µm with novel hollow-core silica glass fibres: demonstration of tissue ablation
使用新型空心石英玻璃纤维灵活传输 2.94 µm Er:YAG 辐射:组织消融演示
- DOI:10.1117/12.2002430
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Urich A
- 通讯作者:Urich A
Fabrication of silica hollow core photonic crystal fibres for Er:YAG surgical applications
用于 Er:YAG 外科手术应用的二氧化硅空心光子晶体光纤的制造
- DOI:10.1117/12.906171
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Urich A
- 通讯作者:Urich A
Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures.
- DOI:10.1364/boe.4.000193
- 发表时间:2013-02-01
- 期刊:
- 影响因子:3.4
- 作者:Urich A;Maier RR;Yu F;Knight JC;Hand DP;Shephard JD
- 通讯作者:Shephard JD
Silica hollow core microstructured fibres for mid-infrared surgical applications
用于中红外手术应用的二氧化硅空心微结构纤维
- DOI:10.1016/j.jnoncrysol.2013.01.055
- 发表时间:2013
- 期刊:
- 影响因子:3.5
- 作者:Urich A
- 通讯作者:Urich A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Shephard其他文献
Jonathan Shephard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Shephard', 18)}}的其他基金
PreCisE: A Precision laser scalpel for Cancer diagnostics and Eradication
PreCisE:用于癌症诊断和根除的精密激光手术刀
- 批准号:
EP/V006185/1 - 财政年份:2021
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant
A fluorescence guided steerable laser tool for precision resection of early stage cancers
用于精确切除早期癌症的荧光引导可操纵激光工具
- 批准号:
EP/N02494X/1 - 财政年份:2016
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant
Direct Digital Fabrication: Integration of Advanced Manufacturing Processes
直接数字化制造:先进制造工艺的集成
- 批准号:
EP/L017431/1 - 财政年份:2014
- 资助金额:
$ 40.68万 - 项目类别:
Research Grant
相似国自然基金
PVA–Silica杂化膜用于促进渗透汽化膜反应器(PVMR)性能及其连续流模型研究
- 批准号:LZY21B060001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Fellowship
Quantifying the effect of sediment microbial activity in facilitating silica sequestration during early diagenesis (QUALIFIED)
量化早期成岩过程中沉积物微生物活性对促进二氧化硅固存的影响(合格)
- 批准号:
2319429 - 财政年份:2024
- 资助金额:
$ 40.68万 - 项目类别:
Standard Grant
Chemical Control of Silica Scaling in Geothermal Systems
地热系统中二氧化硅结垢的化学控制
- 批准号:
2884852 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Studentship
Silica Nanocapsule-Mediated Nonviral Delivery of CRISPR Base Editor mRNA and Allele Specific sgRNA for Gene Correction in Leber Congenital Amaurosis
二氧化硅纳米胶囊介导的 CRISPR 碱基编辑器 mRNA 和等位基因特异性 sgRNA 非病毒传递用于 Leber 先天性黑蒙的基因校正
- 批准号:
10668166 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Photo-thermal carbon dioxide capture directly from the air using silica / carbon aerogel
使用二氧化硅/碳气凝胶直接从空气中捕获光热二氧化碳
- 批准号:
23KJ0898 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Preparation of crystalline porous silica using inorganic oxide molecules as templates
以无机氧化物分子为模板制备结晶多孔二氧化硅
- 批准号:
23KJ2037 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Targeted Death of Collagen1a1-Expressing Fibroblasts Reduces Silica-Induced Pulmonary Fibrosis
表达胶原蛋白 1a1 的成纤维细胞的靶向死亡可减少二氧化硅诱导的肺纤维化
- 批准号:
10751484 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Molecular Phenotyping and Image-Guidance for Surgical Treatment of High-Risk Prostate Cancer Using Ultrasmall Silica Nanoparticles
使用超小二氧化硅纳米粒子进行高风险前列腺癌手术治疗的分子表型分析和图像引导
- 批准号:
10908927 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Research on power-over-fiber technologies using pure silica-clad double clad fibers
纯石英包层双包层光纤光纤供电技术研究
- 批准号:
23H01411 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of transparent wood composite impregnated with ultrasmall silica particle
超细二氧化硅颗粒浸渍透明木质复合材料的研制
- 批准号:
23H01734 - 财政年份:2023
- 资助金额:
$ 40.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)